BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22592337)

  • 21. Interfacial properties of cetyltrimethylammonium-coated SiO(2) nanoparticles in aqueous media as studied by using different indicator dyes.
    Bryleva EY; Vodolazkaya NA; McHedlov-Petrossyan NO; Samokhina LV; Matveevskaya NA; Tolmachev AV
    J Colloid Interface Sci; 2007 Dec; 316(2):712-22. PubMed ID: 17692863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new route to the synthesis of (E)- and (Z)-2-alkene-4-ynoates and nitriles from vic-iiodo-(E)-alkenes catalyzed by Pd(0) nanoparticles in water.
    Ranu BC; Chattopadhyay K
    Org Lett; 2007 Jun; 9(12):2409-12. PubMed ID: 17488036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. L-cysteine functionalized magnetic nanoparticles (LCMNP): a novel magnetically separable organocatalyst for one-pot synthesis of 2-amino-4H-chromene-3-carbonitriles in water.
    Khalafi-Nezhad A; Nourisefat M; Panahi F
    Org Biomol Chem; 2015 Jul; 13(28):7772-9. PubMed ID: 26098281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The oxidation of water by cerium(IV) catalysed by nanoparticulate RuO2 on mesoporous silica.
    King NC; Dickinson C; Zhou W; Bruce DW
    Dalton Trans; 2005 Mar; (6):1027-32. PubMed ID: 15739004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphite-derivatized ruthenium-carbohydrate complexes in the catalytic hydration of nitriles. short communication.
    Ashraf SM; Berger I; Nazarov AA; Hartinger CG; Koroteev MP; Nifant'ev EE; Keppler BK
    Chem Biodivers; 2008 Aug; 5(8):1640-1644. PubMed ID: 18729099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aerobic oxidative transformation of primary azides to nitriles by ruthenium hydroxide catalyst.
    He J; Yamaguchi K; Mizuno N
    J Org Chem; 2011 Jun; 76(11):4606-10. PubMed ID: 21534533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silica nanoparticles grown and stabilized in organic nonalcoholic media.
    El Hawi N; Nayral C; Delpech F; Coppel Y; Cornejo A; Castel A; Chaudret B
    Langmuir; 2009 Jul; 25(13):7540-6. PubMed ID: 19496545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic signal amplification using [Fe(III)(biuret-amide)]-mesoporous silica nanoparticles: visual cyanide detection.
    Panda C; Dhar BB; Malvi B; Bhattacharjee Y; Gupta SS
    Chem Commun (Camb); 2013 Mar; 49(22):2216-8. PubMed ID: 23392230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of hierarchical hollow silica microspheres containing surface nanoparticles employing the quasi-hard template of poly(4-vinylpyridine) microspheres.
    Su Y; Yan R; Dan M; Xu J; Wang D; Zhang W; Liu S
    Langmuir; 2011 Jul; 27(14):8983-9. PubMed ID: 21671559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method.
    Bagwe RP; Yang C; Hilliard LR; Tan W
    Langmuir; 2004 Sep; 20(19):8336-42. PubMed ID: 15350111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.
    Pi M; Yang T; Yuan J; Fujii S; Kakigi Y; Nakamura Y; Cheng S
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):193-9. PubMed ID: 20347275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel method for synthesis of silica nanoparticles.
    Rao KS; El-Hami K; Kodaki T; Matsushige K; Makino K
    J Colloid Interface Sci; 2005 Sep; 289(1):125-31. PubMed ID: 15913636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functionalized Ni@SiO2 core/shell magnetic nanoparticles as a chemosensor and adsorbent for Cu2+ ion in drinking water and human blood.
    Park M; Seo S; Lee SJ; Jung JH
    Analyst; 2010 Nov; 135(11):2802-5. PubMed ID: 20842293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional silica nanoparticles synthesized by water-in-oil microemulsion processes.
    Aubert T; Grasset F; Mornet S; Duguet E; Cador O; Cordier S; Molard Y; Demange V; Mortier M; Haneda H
    J Colloid Interface Sci; 2010 Jan; 341(2):201-8. PubMed ID: 19875127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ruthenium-catalyzed redox-neutral and single-step amide synthesis from alcohol and nitrile with complete atom economy.
    Kang B; Fu Z; Hong SH
    J Am Chem Soc; 2013 Aug; 135(32):11704-7. PubMed ID: 23915114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mononuclear ruthenium hydride species versus ruthenium nanoparticles: the effect of silane functionalities on silica surfaces.
    Berthoud R; Baudouin A; Fenet B; Lukens W; Pelzer K; Basset JM; Candy JP; Copéret C
    Chemistry; 2008; 14(12):3523-6. PubMed ID: 18338411
    [No Abstract]   [Full Text] [Related]  

  • 37. [Ru(bpy)3]2+-doped silica nanoparticles within layer-by-layer biomolecular coatings and their application as a biocompatible electrochemiluminescent tag material.
    Wei H; Liu J; Zhou L; Li J; Jiang X; Kang J; Yang X; Dong S; Wang E
    Chemistry; 2008; 14(12):3687-93. PubMed ID: 18306266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles.
    Zhang J; Li X; Rosenholm JM; Gu HC
    J Colloid Interface Sci; 2011 Sep; 361(1):16-24. PubMed ID: 21689824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pore fabrication in various silica-based nanoparticles by controlled etching.
    Zhao L; Zhao Y; Han Y
    Langmuir; 2010 Jul; 26(14):11784-9. PubMed ID: 20557087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.