BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22592501)

  • 1. Comparative analysis of the chicken TCRα/δ locus.
    Parra ZE; Miller RD
    Immunogenetics; 2012 Aug; 64(8):641-5. PubMed ID: 22592501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of reptilian and avian olfactory receptor gene repertoires: species-specific expansion of group gamma genes in birds.
    Steiger SS; Kuryshev VY; Stensmyr MC; Kempenaers B; Mueller JC
    BMC Genomics; 2009 Sep; 10():446. PubMed ID: 19772566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic organization and molecular phylogenies of the beta (beta) keratin multigene family in the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata): implications for feather evolution.
    Greenwold MJ; Sawyer RH
    BMC Evol Biol; 2010 May; 10():148. PubMed ID: 20482795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A linkage map of the zebra finch Taeniopygia guttata provides new insights into avian genome evolution.
    Stapley J; Birkhead TR; Burke T; Slate J
    Genetics; 2008 May; 179(1):651-67. PubMed ID: 18493078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative single-cell transcriptomic analysis reveals differences in signaling pathways in gonadal primordial germ cells between chicken (Gallus gallus) and zebra finch (Taeniopygia guttata).
    Jung KM; Seo M; Han JY
    FASEB J; 2023 Jan; 37(1):e22706. PubMed ID: 36520042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrachromosomal rearrangements in avian genome evolution: evidence for regions prone to breakpoints.
    Skinner BM; Griffin DK
    Heredity (Edinb); 2012 Jan; 108(1):37-41. PubMed ID: 22045382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Genome Resequencing of TCR Loci in
    Liu F; Li J; Lin IYC; Yang X; Ma J; Chen Y; Lv N; Shi Y; Gao GF; Zhu B
    Immunohorizons; 2020 Jan; 4(1):33-46. PubMed ID: 31992577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene duplication and fragmentation in the zebra finch major histocompatibility complex.
    Balakrishnan CN; Ekblom R; Völker M; Westerdahl H; Godinez R; Kotkiewicz H; Burt DW; Graves T; Griffin DK; Warren WC; Edwards SV
    BMC Biol; 2010 Apr; 8():29. PubMed ID: 20359332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reptiles and mammals have differentially retained long conserved noncoding sequences from the amniote ancestor.
    Janes DE; Chapus C; Gondo Y; Clayton DF; Sinha S; Blatti CA; Organ CL; Fujita MK; Balakrishnan CN; Edwards SV
    Genome Biol Evol; 2011; 3():102-13. PubMed ID: 21183607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary analysis and expression profiling of zebra finch immune genes.
    Ekblom R; French L; Slate J; Burke T
    Genome Biol Evol; 2010; 2():781-90. PubMed ID: 20884724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the chicken and zebra finch Z chromosomes shows evolutionary rearrangements.
    Itoh Y; Kampf K; Arnold AP
    Chromosome Res; 2006; 14(8):805-15. PubMed ID: 17139532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evolution of genes in avian genomes.
    Nam K; Mugal C; Nabholz B; Schielzeth H; Wolf JB; Backström N; Künstner A; Balakrishnan CN; Heger A; Ponting CP; Clayton DF; Ellegren H
    Genome Biol; 2010; 11(6):R68. PubMed ID: 20573239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple sequence repeats in zebra finch (Taeniopygia guttata) expressed sequence tags: a new resource for evolutionary genetic studies of passerines.
    Slate J; Hale MC; Birkhead TR
    BMC Genomics; 2007 Feb; 8():52. PubMed ID: 17300727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of balanced diversity at the chicken interleukin 4 receptor alpha chain locus.
    Downing T; Lynn DJ; Connell S; Lloyd AT; Bhuiyan AK; Silva P; Naqvi AN; Sanfo R; Sow RS; Podisi B; Hanotte O; O'Farrelly C; Bradley DG
    BMC Evol Biol; 2009 Jun; 9():136. PubMed ID: 19527513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic mapping of the major histocompatibility complex in the zebra finch (Taeniopygia guttata).
    Ekblom R; Stapley J; Ball AD; Birkhead T; Burke T; Slate J
    Immunogenetics; 2011 Aug; 63(8):523-30. PubMed ID: 21494955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The avian Toll-Like receptor pathway--subtle differences amidst general conformity.
    Cormican P; Lloyd AT; Downing T; Connell SJ; Bradley D; O'Farrelly C
    Dev Comp Immunol; 2009 Sep; 33(9):967-73. PubMed ID: 19539094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The recombination landscape of the zebra finch Taeniopygia guttata genome.
    Backström N; Forstmeier W; Schielzeth H; Mellenius H; Nam K; Bolund E; Webster MT; Ost T; Schneider M; Kempenaers B; Ellegren H
    Genome Res; 2010 Apr; 20(4):485-95. PubMed ID: 20357052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated evolution of PAK3- and PIM1-like kinase gene families in the zebra finch, Taeniopygia guttata.
    Kong L; Lovell PV; Heger A; Mello CV; Ponting CP
    Mol Biol Evol; 2010 Aug; 27(8):1923-34. PubMed ID: 20237222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of a zebra finch BAC library to determine the structure of an avian androgen receptor genomic region.
    Luo M; Yu Y; Kim H; Kudrna D; Itoh Y; Agate RJ; Melamed E; Goicoechea JL; Talag J; Mueller C; Wang W; Currie J; Sisneros NB; Wing RA; Arnold AP
    Genomics; 2006 Jan; 87(1):181-90. PubMed ID: 16321505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomic analysis of the zebra finch degradome provides new insights into evolution of proteases in birds and mammals.
    Quesada V; Velasco G; Puente XS; Warren WC; López-Otín C
    BMC Genomics; 2010 Apr; 11():220. PubMed ID: 20359326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.