These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22592893)

  • 1. A ternary model for double-emulsion formation in a capillary microfluidic device.
    Park JM; Anderson PD
    Lab Chip; 2012 Aug; 12(15):2672-7. PubMed ID: 22592893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification.
    Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V
    J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices.
    Nabavi SA; Gu S; Vladisavljević GT; Ekanem EE
    J Colloid Interface Sci; 2015 Jul; 450():279-287. PubMed ID: 25828435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.
    Aland S; Lowengrub J; Voigt A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046321. PubMed ID: 23214691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice Boltzmann simulations of bubble formation in a microfluidic T-junction.
    Amaya-Bower L; Lee T
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1945):2405-13. PubMed ID: 21576154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces.
    Christov NC; Danov KD; Danova DK; Kralchevsky PA
    Langmuir; 2008 Feb; 24(4):1397-410. PubMed ID: 17963414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled formation of double-emulsion drops in sudden expansion channels.
    Kim SH; Kim B
    J Colloid Interface Sci; 2014 Feb; 415():26-31. PubMed ID: 24267326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drop formation in non-planar microfluidic devices.
    Rotem A; Abate AR; Utada AS; Van Steijn V; Weitz DA
    Lab Chip; 2012 Nov; 12(21):4263-8. PubMed ID: 22864475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mastering a double emulsion in a simple co-flow microfluidic to generate complex polymersomes.
    Perro A; Nicolet C; Angly J; Lecommandoux S; Le Meins JF; Colin A
    Langmuir; 2011 Jul; 27(14):9034-42. PubMed ID: 21082804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emulsion droplet formation in coflowing liquid streams.
    Chen Y; Wu L; Zhang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013002. PubMed ID: 23410421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dripping, Jetting and Regime Transition of Droplet Formation in a Buoyancy-Assisted Microfluidic Device.
    Shen C; Liu F; Wu L; Yu C; Yu W
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33121113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization Study of Oil-in-Water-in-Oil (O/W/O) Double Emulsion Formation in a Simple and Robust Co-Flowing Microfluidic Device.
    Lu P; Wu L; Liu X
    Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles.
    Yang F; Niu Q; Lan Q; Sun D
    J Colloid Interface Sci; 2007 Feb; 306(2):285-95. PubMed ID: 17113594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular scale contact line hydrodynamics of immiscible flows.
    Qian T; Wang XP; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016306. PubMed ID: 12935245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic emulsion separation-simultaneous separation and sensing by multilayer nanofilm structures.
    Uhlmann P; Varnik F; Truman P; Zikos G; Moulin JF; Müller-Buschbaum P; Stamm M
    J Phys Condens Matter; 2011 May; 23(18):184123. PubMed ID: 21508469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface.
    Freer EM; Yim KS; Fuller GG; Radke CJ
    Langmuir; 2004 Nov; 20(23):10159-67. PubMed ID: 15518508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple emulsion stability: pressure balance and interfacial film strength.
    Jiao J; Rhodes DG; Burgess DJ
    J Colloid Interface Sci; 2002 Jun; 250(2):444-50. PubMed ID: 16290683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuously Electrotriggered Core Coalescence of Double-Emulsion Drops for Microreactions.
    Hou L; Ren Y; Jia Y; Deng X; Liu W; Feng X; Jiang H
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12282-12289. PubMed ID: 28345345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.