These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 22593052)

  • 1. Dopaminergic modulation of mitral cells and odor responses in the zebrafish olfactory bulb.
    Bundschuh ST; Zhu P; Schärer YP; Friedrich RW
    J Neurosci; 2012 May; 32(20):6830-40. PubMed ID: 22593052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopamine D2 receptor-mediated presynaptic inhibition of olfactory nerve terminals.
    Ennis M; Zhou FM; Ciombor KJ; Aroniadou-Anderjaska V; Hayar A; Borrelli E; Zimmer LA; Margolis F; Shipley MT
    J Neurophysiol; 2001 Dec; 86(6):2986-97. PubMed ID: 11731555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Olfactory nerve-evoked, metabotropic glutamate receptor-mediated synaptic responses in rat olfactory bulb mitral cells.
    Ennis M; Zhu M; Heinbockel T; Hayar A
    J Neurophysiol; 2006 Apr; 95(4):2233-41. PubMed ID: 16394070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of on/off glomerular signaling by a local GABAergic microcircuit in the olfactory bulb.
    Gire DH; Schoppa NE
    J Neurosci; 2009 Oct; 29(43):13454-64. PubMed ID: 19864558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopaminergic modulation of mitral cell activity in the frog olfactory bulb: a combined radioligand binding-electrophysiological study.
    Duchamp-Viret P; Coronas V; Delaleu JC; Moyse E; Duchamp A
    Neuroscience; 1997 Jul; 79(1):203-16. PubMed ID: 9178876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity.
    Friedrich RW; Laurent G
    Science; 2001 Feb; 291(5505):889-94. PubMed ID: 11157170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABA(B)-mediated action in the frog olfactory bulb makes odor responses more salient.
    Duchamp-Viret P; Delaleu JC; Duchamp A
    Neuroscience; 2000; 97(4):771-7. PubMed ID: 10842023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of N-methyl-D-aspartate glutamate receptor antagonists on oscillatory signal propagation in the guinea-pig accessory olfactory bulb slice: characterization by optical, field potential and patch clamp recordings.
    Sugai T; Onoda N
    Neuroscience; 2005; 135(2):583-94. PubMed ID: 16112479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Range GABAergic Inhibition Modulates Spatiotemporal Dynamics of the Output Neurons in the Olfactory Bulb.
    Villar PS; Hu R; Araneda RC
    J Neurosci; 2021 Apr; 41(16):3610-3621. PubMed ID: 33687961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological analysis of ionotropic glutamate receptor function in neuronal circuits of the zebrafish olfactory bulb.
    Tabor R; Friedrich RW
    PLoS One; 2008 Jan; 3(1):e1416. PubMed ID: 18183297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective neuroinhibitory effects of taurine in slices of rat main olfactory bulb.
    Belluzzi O; Puopolo M; Benedusi M; Kratskin I
    Neuroscience; 2004; 124(4):929-44. PubMed ID: 15026133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABAA and glutamate receptor involvement in dendrodendritic synaptic interactions from salamander olfactory bulb.
    Wellis DP; Kauer JS
    J Physiol; 1993 Sep; 469():315-39. PubMed ID: 7903696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine inhibits mitral/tufted--> granule cell synapses in the frog olfactory bulb.
    Davison IG; Boyd JD; Delaney KR
    J Neurosci; 2004 Sep; 24(37):8057-67. PubMed ID: 15371506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors.
    Aroniadou-Anderjaska V; Zhou FM; Priest CA; Ennis M; Shipley MT
    J Neurophysiol; 2000 Sep; 84(3):1194-203. PubMed ID: 10979995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe.
    Wilson RI; Laurent G
    J Neurosci; 2005 Oct; 25(40):9069-79. PubMed ID: 16207866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct excitation of mitral cells via activation of alpha1-noradrenergic receptors in rat olfactory bulb slices.
    Hayar A; Heyward PM; Heinbockel T; Shipley MT; Ennis M
    J Neurophysiol; 2001 Nov; 86(5):2173-82. PubMed ID: 11698509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopaminergic modulation of olfactory bulb processing affects odor discrimination learning in rats.
    Escanilla O; Yuhas C; Marzan D; Linster C
    Behav Neurosci; 2009 Aug; 123(4):828-33. PubMed ID: 19634942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine receptor subtypes modulate olfactory bulb gamma-aminobutyric acid type A receptors.
    Brünig I; Sommer M; Hatt H; Bormann J
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2456-60. PubMed ID: 10051664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhalation Frequency Controls Reformatting of Mitral/Tufted Cell Odor Representations in the Olfactory Bulb.
    Díaz-Quesada M; Youngstrom IA; Tsuno Y; Hansen KR; Economo MN; Wachowiak M
    J Neurosci; 2018 Feb; 38(9):2189-2206. PubMed ID: 29374137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine exerts potent inhibitory actions on mammalian olfactory bulb neurons.
    Trombley PQ; Shepherd GM
    J Neurophysiol; 1994 Feb; 71(2):761-7. PubMed ID: 8176438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.