These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 22593060)

  • 1. Rewiring of afferent fibers in the somatosensory thalamus of mice caused by peripheral sensory nerve transection.
    Takeuchi Y; Yamasaki M; Nagumo Y; Imoto K; Watanabe M; Miyata M
    J Neurosci; 2012 May; 32(20):6917-30. PubMed ID: 22593060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Afferent Fiber Remodeling in the Somatosensory Thalamus of Mice as a Neural Basis of Somatotopic Reorganization in the Brain and Ectopic Mechanical Hypersensitivity after Peripheral Sensory Nerve Injury.
    Takeuchi Y; Osaki H; Yagasaki Y; Katayama Y; Miyata M
    eNeuro; 2017; 4(2):. PubMed ID: 28396882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tonic GABAergic Inhibition Is Essential for Nerve Injury-Induced Afferent Remodeling in the Somatosensory Thalamus and Ectopic Sensations.
    Nagumo Y; Ueta Y; Nakayama H; Osaki H; Takeuchi Y; Uesaka N; Kano M; Miyata M
    Cell Rep; 2020 Jun; 31(12):107797. PubMed ID: 32579924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental remodelling of the lemniscal synapse in the ventral basal thalamus of the mouse.
    Arsenault D; Zhang ZW
    J Physiol; 2006 May; 573(Pt 1):121-32. PubMed ID: 16581865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro electrophysiological and Co2+-uptake study on the effect of infraorbital nerve transection on the cortical and thalamic neuronal activity.
    Világi I; Dóczi J; Kirilly D; Banczerowski-Pelyhe I; Takács J
    Brain Res; 1999 Oct; 844(1-2):118-25. PubMed ID: 10536267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory enrichment after peripheral nerve injury restores cortical, not thalamic, receptive field organization.
    Florence SL; Boydston LA; Hackett TA; Lachoff HT; Strata F; Niblock MM
    Eur J Neurosci; 2001 May; 13(9):1755-66. PubMed ID: 11359527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical window for experience-dependent plasticity at whisker sensory relay synapse in the thalamus.
    Wang H; Zhang ZW
    J Neurosci; 2008 Dec; 28(50):13621-8. PubMed ID: 19074025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elimination of redundant synaptic inputs in the absence of synaptic strengthening.
    Wang H; Liu H; Zhang ZW
    J Neurosci; 2011 Nov; 31(46):16675-84. PubMed ID: 22090494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brainstem local microglia induce whisker map plasticity in the thalamus after peripheral nerve injury.
    Ueta Y; Miyata M
    Cell Rep; 2021 Mar; 34(10):108823. PubMed ID: 33691115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Somatotopic reorganization in the brainstem and thalamus following peripheral nerve injury in adult primates.
    Churchill JD; Arnold LL; Garraghty PE
    Brain Res; 2001 Aug; 910(1-2):142-52. PubMed ID: 11489264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological and anatomical characterization of synaptic remodeling in the mouse whisker thalamus.
    Ueta Y; Miyata M
    STAR Protoc; 2021 Sep; 2(3):100743. PubMed ID: 34430916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in quantal amplitude reflect GluR4- subunit number at corticothalamic synapses on two populations of thalamic neurons.
    Golshani P; Liu XB; Jones EG
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):4172-7. PubMed ID: 11274440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of primary sensory (lemniscal) synapses in the ventrobasal thalamus and the relay of high-frequency sensory inputs.
    Castro-Alamancos MA
    J Neurophysiol; 2002 Feb; 87(2):946-53. PubMed ID: 11826059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral nerve damage facilitates functional innervation of brain grafts in adult sensory cortex.
    Ebner FF; Erzurumlu RS; Lee SM
    Proc Natl Acad Sci U S A; 1989 Jan; 86(2):730-4. PubMed ID: 2911603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of thalamocortical response transformations in the rat whisker-barrel system.
    Shoykhet M; Simons DJ
    J Neurophysiol; 2008 Jan; 99(1):356-66. PubMed ID: 17989240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Balancing bilateral sensory activity: callosal processing modulates sensory transmission through the contralateral thalamus by altering the response threshold.
    Li L; Ebner FF
    Exp Brain Res; 2006 Jul; 172(3):397-415. PubMed ID: 16429268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of synaptic transmission and plasticity between sensory and cortical synapses on relay neurons in the ventrobasal nucleus of the rat thalamus.
    Hsu CL; Yang HW; Yen CT; Min MY
    J Physiol; 2010 Nov; 588(Pt 22):4347-63. PubMed ID: 20855435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic functional consequences of adult infraorbital nerve transection for rat trigeminal subnucleus interpolaris.
    Klein BG
    Somatosens Mot Res; 1991; 8(2):175-91. PubMed ID: 1887728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory Activity-Dependent and Sensory Activity-Independent Properties of the Developing Rodent Trigeminal Principal Nucleus.
    Lo FS; Erzurumlu RS
    Dev Neurosci; 2016; 38(3):163-170. PubMed ID: 27287019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gradual and reversible central vestibular reorganization in frog after selective labyrinthine nerve branch lesions.
    Goto F; Straka H; Dieringer N
    Exp Brain Res; 2002 Dec; 147(3):374-86. PubMed ID: 12428145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.