BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 22593553)

  • 1. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin.
    Burki F; Flegontov P; Oborník M; Cihlár J; Pain A; Lukes J; Keeling PJ
    Genome Biol Evol; 2012; 4(6):626-35. PubMed ID: 22593553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids.
    Maruyama S; Suzaki T; Weber AP; Archibald JM; Nozaki H
    BMC Evol Biol; 2011 Apr; 11():105. PubMed ID: 21501489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic footprints of a cryptic plastid endosymbiosis in diatoms.
    Moustafa A; Beszteri B; Maier UG; Bowler C; Valentin K; Bhattacharya D
    Science; 2009 Jun; 324(5935):1724-6. PubMed ID: 19556510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
    Janouskovec J; Horák A; Oborník M; Lukes J; Keeling PJ
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10949-54. PubMed ID: 20534454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The endosymbiotic origin, diversification and fate of plastids.
    Keeling PJ
    Philos Trans R Soc Lond B Biol Sci; 2010 Mar; 365(1541):729-48. PubMed ID: 20124341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromera velia, endosymbioses and the rhodoplex hypothesis--plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages).
    Petersen J; Ludewig AK; Michael V; Bunk B; Jarek M; Baurain D; Brinkmann H
    Genome Biol Evol; 2014 Mar; 6(3):666-84. PubMed ID: 24572015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
    Li S; Nosenko T; Hackett JD; Bhattacharya D
    Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What was the real contribution of endosymbionts to the eukaryotic nucleus? Insights from photosynthetic eukaryotes.
    Moreira D; Deschamps P
    Cold Spring Harb Perspect Biol; 2014 Jul; 6(7):a016014. PubMed ID: 24984774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypothesis: Gene-rich plastid genomes in red algae may be an outcome of nuclear genome reduction.
    Qiu H; Lee JM; Yoon HS; Bhattacharya D
    J Phycol; 2017 Jun; 53(3):715-719. PubMed ID: 28095611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary Plastids of Euglenids and Chlorarachniophytes Function with a Mix of Genes of Red and Green Algal Ancestry.
    Ponce-Toledo RI; Moreira D; López-García P; Deschamps P
    Mol Biol Evol; 2018 Sep; 35(9):2198-2204. PubMed ID: 29924337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes.
    Maruyama S; Misawa K; Iseki M; Watanabe M; Nozaki H
    BMC Evol Biol; 2008 May; 8():151. PubMed ID: 18485228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reevaluating the green contribution to diatom genomes.
    Deschamps P; Moreira D
    Genome Biol Evol; 2012; 4(7):683-8. PubMed ID: 22684208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenomic analysis of "red" genes from two divergent species of the "green" secondary phototrophs, the chlorarachniophytes, suggests multiple horizontal gene transfers from the red lineage before the divergence of extant chlorarachniophytes.
    Yang Y; Matsuzaki M; Takahashi F; Qu L; Nozaki H
    PLoS One; 2014; 9(6):e101158. PubMed ID: 24972019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diatom genes originating from red and green algae: Implications for the secondary endosymbiosis models.
    Morozov AA; Galachyants YP
    Mar Genomics; 2019 Jun; 45():72-78. PubMed ID: 30792089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An assessment of vertical inheritance versus endosymbiont transfer of nucleus-encoded genes for mitochondrial proteins following tertiary endosymbiosis in Karlodinium micrum.
    Danne JC; Gornik SG; Waller RF
    Protist; 2012 Jan; 163(1):76-90. PubMed ID: 21741306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis.
    Bodył A
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):201-222. PubMed ID: 28544184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red and problematic green phylogenetic signals among thousands of nuclear genes from the photosynthetic and apicomplexa-related Chromera velia.
    Woehle C; Dagan T; Martin WF; Gould SB
    Genome Biol Evol; 2011; 3():1220-30. PubMed ID: 21965651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum.
    Minge MA; Shalchian-Tabrizi K; Tørresen OK; Takishita K; Probert I; Inagaki Y; Klaveness D; Jakobsen KS
    BMC Evol Biol; 2010 Jun; 10():191. PubMed ID: 20565933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids?
    Huang J; Gogarten JP
    Genome Biol; 2007; 8(6):R99. PubMed ID: 17547748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution.
    Chan CX; Reyes-Prieto A; Bhattacharya D
    PLoS One; 2011; 6(12):e29138. PubMed ID: 22195008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.