These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22593675)

  • 1. Flavonoid-deficient mutants in grass pea (Lathyrus sativus L.): genetic control, linkage relationships, and mapping with aconitase and S-nitrosoglutathione reductase isozyme loci.
    Talukdar D
    ScientificWorldJournal; 2012; 2012():345983. PubMed ID: 22593675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dwarf mutations in grass pea (Lathyrus sativus L.): origin, morphology, inheritance and linkage studies.
    Talukdar D
    J Genet; 2009 Aug; 88(2):165-75. PubMed ID: 19700854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retracted: Flavonoid-Deficient Mutants in Grass Pea (
    The Scientific World Journal
    ScientificWorldJournal; 2016; 2016():2584053. PubMed ID: 27689130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocal translocations in grass pea (Lathyrus sativus L.): pattern of transmission, detection of multiple interchanges and their independence.
    Talukdar D
    J Hered; 2010; 101(2):169-76. PubMed ID: 19939966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New isozyme systems for maize (Zea mays L.): aconitate hydratase, adenylate kinase, NADH dehydrogenase, and shikimate dehydrogenase.
    Wendel JF; Goodman MM; Stuber CW; Beckett JB
    Biochem Genet; 1988 Jun; 26(5-6):421-45. PubMed ID: 2850791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf rolling and stem fasciation in grass pea (Lathyrus sativus L.) mutant are mediated through glutathione-dependent cellular and metabolic changes and associated with a metabolic diversion through cysteine during phenotypic reversal.
    Talukdar D; Talukdar T
    Biomed Res Int; 2014; 2014():479180. PubMed ID: 24987684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved linkage of soluble aconitase and galactose-1-phosphate uridyl transferase in mouse and man: assignment of these genes to mouse chromosome 4.
    Nadeau JH; Eicher EM
    Cytogenet Cell Genet; 1982; 34(4):271-81. PubMed ID: 6297853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a linkage map based on a Lathyrus sativus backcross population and preliminary investigation of QTLs associated with resistance to ascochyta blight.
    Skiba B; Ford R; Pang EC
    Theor Appl Genet; 2004 Nov; 109(8):1726-35. PubMed ID: 15502913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetics of isozymes in grasspea.
    Chowdhury MA; Slinkard AE
    J Hered; 2000; 91(2):142-5. PubMed ID: 10768128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transferability of molecular markers from major legumes to Lathyrus spp. for their application in mapping and diversity studies.
    Almeida NF; Trindade Leitão S; Caminero C; Torres AM; Rubiales D; Vaz Patto MC
    Mol Biol Rep; 2014 Jan; 41(1):269-83. PubMed ID: 24203465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide-dismutase deficient mutants in common beans (Phaseolus vulgaris L.): genetic control, differential expressions of isozymes, and sensitivity to arsenic.
    Talukdar D; Talukdar T
    Biomed Res Int; 2013; 2013():782450. PubMed ID: 24078924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial Resistance Against
    Santos C; Martins D; Rubiales D; Vaz Patto MC
    Plant Dis; 2020 Nov; 104(11):2875-2884. PubMed ID: 32954987
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Xu Q; Qu J; Song B; Liu F; Chen P; Krishnan HB
    J Agric Food Chem; 2019 Jul; 67(29):8119-8129. PubMed ID: 31265283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotypic Variation in the Concentration of β-N-Oxalyl-L-α,β-diaminopropionic Acid (β-ODAP) in Grass Pea (Lathyrus sativus L.) Seeds Is Associated with an Accumulation of Leaf and Pod β-ODAP during Vegetative and Reproductive Stages at Three Levels of Water Stress.
    Xiong JL; Xiong YC; Bai X; Kong HY; Tan RY; Zhu H; Siddique KH; Wang JY; Turner NC
    J Agric Food Chem; 2015 Jul; 63(27):6133-41. PubMed ID: 26027639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The aconitate hydratase family from Citrus.
    Terol J; Soler G; Talon M; Cercos M
    BMC Plant Biol; 2010 Oct; 10():222. PubMed ID: 20958971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of heat stress on genome of grass pea (Lathyrus sativus L.).
    Kumar G; Tripathi R
    J Environ Biol; 2009 May; 30(3):405-8. PubMed ID: 20120467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots.
    Brunet J; Varrault G; Zuily-Fodil Y; Repellin A
    Chemosphere; 2009 Nov; 77(8):1113-20. PubMed ID: 19726070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-N-Oxalyl-l-α,β-diaminopropionic Acid (β-ODAP) Content in Lathyrus sativus: The Integration of Nitrogen and Sulfur Metabolism through β-Cyanoalanine Synthase.
    Xu Q; Liu F; Chen P; Jez JM; Krishnan HB
    Int J Mol Sci; 2017 Feb; 18(3):. PubMed ID: 28264526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lead accumulation in the roots of grass pea (Lathyrus sativus L.): a novel plant for phytoremediation systems?
    Brunet J; Repellin A; Varrault G; Terryn N; Zuily-Fodil Y
    C R Biol; 2008 Nov; 331(11):859-64. PubMed ID: 18940701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue specific expression and in-silico characterization of a putative cysteine synthase gene from Lathyrus sativus L.
    Chakraborty S; Mitra J; Samanta MK; Sikdar N; Bhattacharyya J; Manna A; Pradhan S; Chakraborty A; Pati BR
    Gene Expr Patterns; 2018 Jan; 27():128-134. PubMed ID: 29247850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.