These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 22594293)
21. [Effect of weak combined static and low-frequency alternating magnetic fields on the Ehrlich ascites carcinoma in mice]. Novikov GV; Novikov VV; Fesenko EE Biofizika; 2009; 54(6):1120-7. PubMed ID: 20067194 [TBL] [Abstract][Full Text] [Related]
22. [Possible fundamental unity of magnetobiological "resonances"]. Zakharov SD Biofizika; 2010; 55(4):626-30. PubMed ID: 20968073 [TBL] [Abstract][Full Text] [Related]
24. Realistic modeling of ion cloud motion in a Fourier transform ion cyclotron resonance cell by use of a particle-in-cell approach. Nikolaev EN; Heeren RM; Popov AM; Pozdneev AV; Chingin KS Rapid Commun Mass Spectrom; 2007; 21(22):3527-46. PubMed ID: 17944004 [TBL] [Abstract][Full Text] [Related]
25. [Effect of extremely low frequency magnetic fields on intracellular free calcium in HepG2 cells]. Yang W; Xu T; Huo XL; Song T Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2003 Oct; 21(5):332-4. PubMed ID: 14761392 [TBL] [Abstract][Full Text] [Related]
26. Optimal durations of single exposures to a frequency-modulated magnetic field immediately after bisection in planarian predict final growth values. Tessaro LW; Persinger MA Bioelectromagnetics; 2013 Dec; 34(8):613-7. PubMed ID: 24115101 [TBL] [Abstract][Full Text] [Related]
27. Effects of low-level combined static and weak low-frequency alternating magnetic fields on cytokine production and tumor development in mice. Novoselova EG; Novikov VV; Lunin SM; Glushkova OV; Novoselova TV; Parfenyuk SB; Novoselov SV; Khrenov MO; Fesenko EE Electromagn Biol Med; 2019; 38(1):74-83. PubMed ID: 30472894 [TBL] [Abstract][Full Text] [Related]
28. [Effects of extremely low frequency magnetic fields on hydrolysis of F0F1-ATPases and their relationship with turnover rates of F1]. Chen CF; Cui YB; Yue JC Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2008 Jun; 26(6):327-31. PubMed ID: 18771613 [TBL] [Abstract][Full Text] [Related]
29. Magnetic fields at extremely low-frequency (50 Hz, 0.8 mT) can induce the uptake of intracellular calcium levels in osteoblasts. Zhang X; Liu X; Pan L; Lee I Biochem Biophys Res Commun; 2010 Jun; 396(3):662-6. PubMed ID: 20438704 [TBL] [Abstract][Full Text] [Related]
30. [Some regulatory mechanisms of asexual reproduction in planaria]. Sakharova NIu; Popkova LG; Pakhniushchaia NE Ontogenez; 1975; 6(6):579-84. PubMed ID: 1230675 [TBL] [Abstract][Full Text] [Related]
31. [Combined effect of weak permanent and variable magnetic fields, adjusted to the cyclotron resonance of amino acid ions, on development of Ehrlich ascites carcinoma in mice]. Novikova NI; Novikov VV; Kurakovskaia VE Biofizika; 1998; 43(5):772-5. PubMed ID: 9914837 [TBL] [Abstract][Full Text] [Related]
32. [Effects of extremely low frequency weak magnetic fields on the intracellular free calcium concentration in PC-12 tumor cells]. Huang C; Ye H; Xu J; Liu J; Qu A Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Mar; 17(1):63-5, 94. PubMed ID: 10879196 [TBL] [Abstract][Full Text] [Related]
33. Amplitude and frequency dissociation spectra of ion-protein complexes rotating in magnetic fields. Binhi VN Bioelectromagnetics; 2000 Jan; 21(1):34-45. PubMed ID: 10615090 [TBL] [Abstract][Full Text] [Related]
34. Excitation of radial ion motion in an rf-only multipole ion guide immersed in a strong magnetic field gradient. Beu SC; Hendrickson CL; Marshall AG J Am Soc Mass Spectrom; 2011 Mar; 22(3):591-601. PubMed ID: 21472577 [TBL] [Abstract][Full Text] [Related]
35. Ion cyclotron resonance as a tool in regenerative medicine. Lisi A; Ledda M; de Carlo F; Pozzi D; Messina E; Gaetani R; Chimenti I; Barile L; Giacomello A; D'Emilia E; Giuliani L; Foletti A; Patti A; Vulcano A; Grimaldi S Electromagn Biol Med; 2008; 27(2):127-33. PubMed ID: 18568930 [TBL] [Abstract][Full Text] [Related]
36. [Mechanism of action of combined extremely weak magnetic field on aqueous solution of amino acid]. Zhadin MN; Bakharev BV; Bobkova NV Biofizika; 2014; 59(4):829-32. PubMed ID: 25707253 [TBL] [Abstract][Full Text] [Related]
37. [Combined effect of variable and static magnetic fields on rat behavior in the "open field "]. Deriugina ON; Pisachenko TM; Zhadin MN Biofizika; 1996; 41(3):762-4. PubMed ID: 8924481 [TBL] [Abstract][Full Text] [Related]
38. [Modulation of Ca(2+)-dependent proteinase activity in invertebrates and fish under the action of weak low-frequency magnetic fields]. Kantserova NP; Ushakova NV; Krylov VV; Lysenko LA; Nemova NN Bioorg Khim; 2013; 39(4):418-23. PubMed ID: 24707722 [TBL] [Abstract][Full Text] [Related]
39. [Molecular mechanisms of the biological effects of weak magnetic fields. V. Inactivation in vitro of recombinant Rous sarcoma virus reverse transcriptase under the combined action of weak direct and low-frequency alternating magnetic fields, adjusted to the cyclotron resonance of polar amino acid ions]. Shvetsov IuP; Novikov VV; Fesenko EE; Chernov AP; Ivanov VA Biofizika; 1998; 43(6):977-80. PubMed ID: 10079917 [TBL] [Abstract][Full Text] [Related]
40. [Molecular mechanisms of biological action of low magnetic fields. I. Stability of chromatin from Ehrlich ascite carcinoma and mouse brain cells to the treatment of DNase 1 under combined action of low constant and alternating low-frequency magnetic fields adjusted to the cyclotron resonance of ions of polar amino acids]. Novikov VV; Shvetsov IuP; Fesenko EE; Novikova NI Biofizika; 1997; 42(3):733-7. PubMed ID: 9296635 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]