These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 22594551)

  • 1. Proton conduction in exchange membranes across multiple length scales.
    Jorn R; Savage J; Voth GA
    Acc Chem Res; 2012 Nov; 45(11):2002-10. PubMed ID: 22594551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The curious case of the hydrated proton.
    Knight C; Voth GA
    Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excess proton solvation and delocalization in a hydrophilic pocket of the proton conducting polymer membrane nafion.
    Petersen MK; Wang F; Blake NP; Metiu H; Voth GA
    J Phys Chem B; 2005 Mar; 109(9):3727-30. PubMed ID: 16851417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling of morphology and proton transport in PFSA membranes.
    Elliott JA; Paddison SJ
    Phys Chem Chem Phys; 2007 Jun; 9(21):2602-18. PubMed ID: 17627306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the solvation and transport of the hydrated proton in the perfluorosulfonic acid membrane nafion.
    Petersen MK; Voth GA
    J Phys Chem B; 2006 Sep; 110(37):18594-600. PubMed ID: 16970488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing advanced alkaline polymer electrolytes for fuel cell applications.
    Pan J; Chen C; Zhuang L; Lu J
    Acc Chem Res; 2012 Mar; 45(3):473-81. PubMed ID: 22075175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes.
    Wescott JT; Qi Y; Subramanian L; Capehart TW
    J Chem Phys; 2006 Apr; 124(13):134702. PubMed ID: 16613463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge transport in poly-imidazole membranes: a fresh appraisal of the Grotthuss mechanism.
    Mangiatordi GF; Butera V; Russo N; Laage D; Adamo C
    Phys Chem Chem Phys; 2012 Aug; 14(31):10910-8. PubMed ID: 22706331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a predictive understanding of water and charge transport in proton exchange membranes.
    Selvan ME; Calvo-Muñoz E; Keffer DJ
    J Phys Chem B; 2011 Mar; 115(12):3052-61. PubMed ID: 21384807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Critical Review of Electrolytes for Advanced Low- and High-Temperature Polymer Electrolyte Membrane Fuel Cells.
    Javed A; Palafox Gonzalez P; Thangadurai V
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):29674-29699. PubMed ID: 37326582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications.
    Robertson NJ; Kostalik HA; Clark TJ; Mutolo PF; Abruña HD; Coates GW
    J Am Chem Soc; 2010 Mar; 132(10):3400-4. PubMed ID: 20178312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly flexible, proton-conductive silicate glass electrolytes for medium-temperature/low-humidity proton exchange membrane fuel cells.
    Lee HJ; Kim JH; Won JH; Lim JM; Hong YT; Lee SY
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5034-43. PubMed ID: 23672268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computer simulation model for proton transport in liquid imidazole.
    Chen H; Yan T; Voth GA
    J Phys Chem A; 2009 Apr; 113(16):4507-17. PubMed ID: 19275136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Dynamics Simulation of Proton Transport in Polymer Electrolyte Membrane.
    Mabuchi T; Tokumasu T
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2958-63. PubMed ID: 26353520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio molecular dynamics simulation of proton hopping in a model polymer membrane.
    Devanathan R; Idupulapati N; Baer MD; Mundy CJ; Dupuis M
    J Phys Chem B; 2013 Dec; 117(51):16522-9. PubMed ID: 24320080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Fluorinated Polymer Composite Proton Exchange Membranes for Fuel Cell Applications - A Review.
    Esmaeili N; Gray EM; Webb CJ
    Chemphyschem; 2019 Aug; 20(16):2016-2053. PubMed ID: 31334917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications.
    Miyatake K; Chikashige Y; Higuchi E; Watanabe M
    J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameterization of a coarse-grained model with short-ranged interactions for modeling fuel cell membranes with controlled water uptake.
    Lu J; Miller C; Molinero V
    Phys Chem Chem Phys; 2017 Jul; 19(27):17698-17707. PubMed ID: 28653074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained model of nanoscale segregation, water diffusion, and proton transport in Nafion membranes.
    Vishnyakov A; Mao R; Lee MT; Neimark AV
    J Chem Phys; 2018 Jan; 148(2):024108. PubMed ID: 29331134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton solvation and transport in hydrated nafion.
    Feng S; Voth GA
    J Phys Chem B; 2011 May; 115(19):5903-12. PubMed ID: 21510678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.