BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22595311)

  • 1. Effective mechanical properties of diaphyseal cortical bone in the canine femur.
    Autefage A; Palierne S; Charron C; Swider P
    Vet J; 2012 Nov; 194(2):202-9. PubMed ID: 22595311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The deer femur--a morphological and biomechanical animal model of the human femur.
    Kieser DC; Kanade S; Waddell NJ; Kieser JA; Theis JC; Swain MV
    Biomed Mater Eng; 2014; 24(4):1693-703. PubMed ID: 24948453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur.
    Vahey JW; Lewis JL; Vanderby R
    J Biomech; 1987; 20(1):29-33. PubMed ID: 3558426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineralization- and remodeling-unrelated improvement of the post-yield properties of rat cortical bone by high doses of olpadronate.
    Capozza RF; Mondelo N; Reina PS; Nocciolino L; Meta M; Roldan EJ; Ferretti JL; Cointry GR
    J Musculoskelet Neuronal Interact; 2013 Jun; 13(2):185-94. PubMed ID: 23728105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deterioration of bone quality by long-term magnetic field with extremely low frequency in rats.
    Gürgül S; Erdal N; Yilmaz SN; Yildiz A; Ankarali H
    Bone; 2008 Jan; 42(1):74-80. PubMed ID: 17942382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution during growth of the mechanical properties of the cortical bone in equine cannon-bones.
    Bigot G; Bouzidi A; Rumelhart C; Martin-Rosset W
    Med Eng Phys; 1996 Jan; 18(1):79-87. PubMed ID: 8771043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bending properties of cortical bone of the horse.
    Schryver HF
    Am J Vet Res; 1978 Jan; 39(1):25-8. PubMed ID: 629446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residual stress around the cortical surface in bovine femoral diaphysis.
    Yamada S; Tadano S
    J Biomech Eng; 2010 Apr; 132(4):044503. PubMed ID: 20387976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel method to analyze post-yield mechanical properties at trabecular bone tissue level.
    Carretta R; Luisier B; Bernoulli D; Stüssi E; Müller R; Lorenzetti S
    J Mech Behav Biomed Mater; 2013 Apr; 20():6-18. PubMed ID: 23455157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the elastic modulus of mouse cortical bone using electronic speckle pattern interferometry (ESPI) and micro computed tomography: a new approach for characterizing small-bone material properties.
    Chattah NL; Sharir A; Weiner S; Shahar R
    Bone; 2009 Jul; 45(1):84-90. PubMed ID: 19332167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical impact of aluminum accumulation on the pre- and post-yield behavior of rat cortical bone.
    Cointry GR; Capozza RF; Negri AL; Ferretti JL
    J Bone Miner Metab; 2005; 23(1):15-23. PubMed ID: 15616889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone.
    Skedros JG; Dayton MR; Sybrowsky CL; Bloebaum RD; Bachus KN
    J Exp Biol; 2006 Aug; 209(Pt 15):3025-42. PubMed ID: 16857886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of long bones in dogs.
    Markel MD; Sielman E; Rapoff AJ; Kohles SS
    Am J Vet Res; 1994 Aug; 55(8):1178-83. PubMed ID: 7978660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High strain rate response of rabbit femur bones.
    Shunmugasamy VC; Gupta N; Coelho PG
    J Biomech; 2010 Nov; 43(15):3044-50. PubMed ID: 20673668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth-dependent effects of dietary protein concentration and quality on the biomechanical properties of the diaphyseal rat femur.
    Alippi RM; Picasso E; Huygens P; Bozzini CE; Bozzini C
    Endocrinol Nutr; 2012 Jan; 59(1):35-43. PubMed ID: 22137534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic modulus and strength of emu cortical bone.
    Reed KL; Brown TD
    Iowa Orthop J; 2001; 21():53-7. PubMed ID: 11813952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of embalming using a 4% formalin solution on the compressive mechanical properties of human cortical bone.
    Ohman C; Dall'Ara E; Baleani M; Van Sint Jan S; Viceconti M
    Clin Biomech (Bristol, Avon); 2008 Dec; 23(10):1294-8. PubMed ID: 18771829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical evaluation of large-size fourth-generation composite femur and tibia models.
    Gardner MP; Chong AC; Pollock AG; Wooley PH
    Ann Biomed Eng; 2010 Mar; 38(3):613-20. PubMed ID: 20049637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stiff and strong compressive properties are associated with brittle post-yield behavior in equine compact bone material.
    Les CM; Stover SM; Keyak JH; Taylor KT; Kaneps AJ
    J Orthop Res; 2002 May; 20(3):607-14. PubMed ID: 12038638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure.
    Zioupos P; Hansen U; Currey JD
    J Biomech; 2008 Oct; 41(14):2932-9. PubMed ID: 18786670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.