These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 22595701)

  • 1. Biomechanical and metabolic responses to seat-tube angle variation during cycling in tri-athletes.
    Bisi MC; Ceccarelli M; Riva F; Stagni R
    J Electromyogr Kinesiol; 2012 Dec; 22(6):845-51. PubMed ID: 22595701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle coordination patterns for efficient cycling.
    Blake OM; Champoux Y; Wakeling JM
    Med Sci Sports Exerc; 2012 May; 44(5):926-38. PubMed ID: 22089483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of bicycle seat tube angle and hand position on lower extremity kinematics and neuromuscular control: implications for triathlon running performance.
    Silder A; Gleason K; Thelen DG
    J Appl Biomech; 2011 Nov; 27(4):297-305. PubMed ID: 21896955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of bicycle frame ergonomics on triathlon 10-km running performance.
    Garside I; Doran DA
    J Sports Sci; 2000 Oct; 18(10):825-33. PubMed ID: 11055818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in leg muscle activity during running and cycling in humans.
    Bijker KE; de Groot G; Hollander AP
    Eur J Appl Physiol; 2002 Oct; 87(6):556-61. PubMed ID: 12355196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle coordination while pulling up during cycling.
    Mornieux G; Gollhofer A; Stapelfeldt B
    Int J Sports Med; 2010 Dec; 31(12):843-6. PubMed ID: 20827654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of seat tube angle and crank arm length on metabolic and neuromuscular responses and lower extremity joint kinematics during pedaling with a relatively lower seat height.
    Watanabe K
    Eur J Appl Physiol; 2020 Mar; 120(3):697-706. PubMed ID: 32008066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional differences in the activity of the hamstring muscles with increasing running speed.
    Higashihara A; Ono T; Kubota J; Okuwaki T; Fukubayashi T
    J Sports Sci; 2010 Aug; 28(10):1085-92. PubMed ID: 20672221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of cadence on timing of muscle activation and mechanical output in cycling: on the activation dynamics hypothesis.
    McGhie D; Ettema G
    J Electromyogr Kinesiol; 2011 Feb; 21(1):18-24. PubMed ID: 20594872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiorespiratory responses to seat-tube angle variation during steady-state cycling.
    Heil DP; Wilcox AR; Quinn CM
    Med Sci Sports Exerc; 1995 May; 27(5):730-5. PubMed ID: 7674878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of different pedalling techniques on muscle fatigue and mechanical efficiency during prolonged cycling.
    Theurel J; Crepin M; Foissac M; Temprado JJ
    Scand J Med Sci Sports; 2012 Dec; 22(6):714-21. PubMed ID: 21507064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A protocol for measuring the direct effect of cycling on neuromuscular control of running in triathletes.
    Chapman AR; Vicenzino B; Hodges PW; Blanch P; Hahn AG; Milner TE
    J Sports Sci; 2009 May; 27(7):767-82. PubMed ID: 19437184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moment-knee angle relation in well trained athletes.
    Ullrich B; Brueggemann GP
    Int J Sports Med; 2008 Aug; 29(8):639-45. PubMed ID: 18050053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of variation in seat tube angle at different seat heights on submaximal cycling performance in man.
    Price D; Donne B
    J Sports Sci; 1997 Aug; 15(4):395-402. PubMed ID: 9293416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of orthoses on changes in neuromuscular control and aerobic cost of a 1-h run.
    Kelly LA; Girard O; Racinais S
    Med Sci Sports Exerc; 2011 Dec; 43(12):2335-43. PubMed ID: 21552159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cadence selection affects metabolic responses during cycling and subsequent running time to fatigue.
    Vercruyssen F; Suriano R; Bishop D; Hausswirth C; Brisswalter J
    Br J Sports Med; 2005 May; 39(5):267-72. PubMed ID: 15849289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle activation during cycling at different cadences: effect of maximal strength capacity.
    Bieuzen F; Lepers R; Vercruyssen F; Hausswirth C; Brisswalter J
    J Electromyogr Kinesiol; 2007 Dec; 17(6):731-8. PubMed ID: 16996277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical, cardiorespiratory, metabolic and perceived responses to electrically assisted cycling.
    Sperlich B; Zinner C; Hébert-Losier K; Born DP; Holmberg HC
    Eur J Appl Physiol; 2012 Dec; 112(12):4015-25. PubMed ID: 22446956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in running economy and mechanics after maximal cycling in triathletes: influence of performance level.
    Millet GP; Millet GY; Hofmann MD; Candau RB
    Int J Sports Med; 2000 Feb; 21(2):127-32. PubMed ID: 10727074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spring-mass behavior and electromyographic activity evolution during a cycle-run test to exhaustion in triathletes.
    Le Meur Y; Dorel S; Rabita G; Bernard T; Brisswalter J; Hausswirth C
    J Electromyogr Kinesiol; 2012 Dec; 22(6):835-44. PubMed ID: 22613822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.