BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22595982)

  • 1. Hypoxia augments oscillatory blood flow in brachial artery during leg cycling.
    Iwamoto E; Katayama K; Oshida Y; Ishida K
    Med Sci Sports Exerc; 2012 Jun; 44(6):1035-42. PubMed ID: 22595982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrograde blood flow in the inactive limb is enhanced during constant-load leg cycling in hypoxia.
    Iwamoto E; Katayama K; Yamashita S; Oshida Y; Ishida K
    Eur J Appl Physiol; 2013 Oct; 113(10):2565-75. PubMed ID: 23864526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-mediated dilation in the inactive limb following acute hypoxic exercise.
    Katayama K; Yamashita S; Iwamoto E; Ishida K
    Clin Physiol Funct Imaging; 2016 Jan; 36(1):60-9. PubMed ID: 25257848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise intensity modulates brachial artery retrograde blood flow and shear rate during leg cycling in hypoxia.
    Iwamoto E; Katayama K; Ishida K
    Physiol Rep; 2015 Jun; 3(6):. PubMed ID: 26038470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brachial artery blood flow responses to different modalities of lower limb exercise.
    Thijssen DH; Dawson EA; Black MA; Hopman MT; Cable NT; Green DJ
    Med Sci Sports Exerc; 2009 May; 41(5):1072-9. PubMed ID: 19346980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doppler ultrasound evaluation of the structural and hemodynamic changes in the brachial artery following two different exercise protocols.
    Ozcan H; Oztekin PS; Zergeroğlu AM; Ersöz G; Fiçicilar H; Ustüner E
    Diagn Interv Radiol; 2006 Jun; 12(2):80-4. PubMed ID: 16752354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of hypoxia on pulmonary O2 uptake, leg blood flow and muscle deoxygenation during single-leg knee-extension exercise.
    DeLorey DS; Shaw CN; Shoemaker JK; Kowalchuk JM; Paterson DH
    Exp Physiol; 2004 May; 89(3):293-302. PubMed ID: 15123565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of sinusoidal leg cycling exercise period on brachial artery blood flow dynamics in humans.
    Miura K; Kashima H; Oue A; Kondo A; Watanabe S; Endo MY; Fukuba Y
    J Physiol Sci; 2020 Apr; 70(1):23. PubMed ID: 32312251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brachial artery blood flow dynamics during sinusoidal leg cycling exercise in humans.
    Fukuba Y; Endo MY; Kondo A; Kikugawa Y; Miura K; Kashima H; Fujimoto M; Hayashi N; Fukuoka Y; Koga S
    Physiol Rep; 2017 Oct; 5(19):. PubMed ID: 28989117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of brachial artery blood flow across the cardiac cycle: retrograde flows during cycle ergometry.
    Green D; Cheetham C; Reed C; Dembo L; O'Driscoll G
    J Appl Physiol (1985); 2002 Jul; 93(1):361-8. PubMed ID: 12070226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of chronic endurance exercise training on conduit artery retrograde and oscillatory shear in older adults.
    Casey DP; Schneider AC; Ueda K
    Eur J Appl Physiol; 2016 Oct; 116(10):1931-40. PubMed ID: 27497720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of acute exercise in hypoxia on flow-mediated vasodilation.
    Katayama K; Fujita O; Iemitsu M; Kawano H; Iwamoto E; Saito M; Ishida K
    Eur J Appl Physiol; 2013 Feb; 113(2):349-57. PubMed ID: 22729610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood flow in the brachial artery increases after intense cycling exercise.
    Medbø JI; Hisdal J; Stranden E
    Scand J Clin Lab Invest; 2009; 69(7):752-63. PubMed ID: 19929718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hyperoxia and hypoxia on leg blood flow and pulmonary and leg oxygen uptake at the onset of kicking exercise.
    MacDonald MJ; Tarnopolsky MA; Hughson RL
    Can J Physiol Pharmacol; 2000 Jan; 78(1):67-74. PubMed ID: 10741762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of aging on limb blood flow in humans.
    Donato AJ; Uberoi A; Wray DW; Nishiyama S; Lawrenson L; Richardson RS
    Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H272-8. PubMed ID: 16183733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous limb vascular responsiveness to shear stimuli during dynamic exercise in humans.
    Wray DW; Uberoi A; Lawrenson L; Richardson RS
    J Appl Physiol (1985); 2005 Jul; 99(1):81-6. PubMed ID: 15718401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hypoxia on diaphragmatic fatigue in highly trained athletes.
    Vogiatzis I; Georgiadou O; Koskolou M; Athanasopoulos D; Kostikas K; Golemati S; Wagner H; Roussos C; Wagner PD; Zakynthinos S
    J Physiol; 2007 May; 581(Pt 1):299-308. PubMed ID: 17317748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of postexercise shear rate patterns following different intensities and durations of running in healthy men.
    Johnson BD; Wallace JP
    Clin Physiol Funct Imaging; 2012 May; 32(3):234-40. PubMed ID: 22487159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral and muscle deoxygenation, hypoxic ventilatory chemosensitivity and cerebrovascular responsiveness during incremental exercise.
    Peltonen JE; Paterson DH; Shoemaker JK; Delorey DS; Dumanoir GR; Petrella RJ; Kowalchuk JM
    Respir Physiol Neurobiol; 2009 Oct; 169(1):24-35. PubMed ID: 19729079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heart failure patients demonstrate impaired changes in brachial artery blood flow and shear rate pattern during moderate-intensity cycle exercise.
    Benda NM; Seeger JP; van Lier DP; Bellersen L; van Dijk AP; Hopman MT; Thijssen DH
    Exp Physiol; 2015 Apr; 100(4):463-74. PubMed ID: 25655515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.