BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 225985)

  • 21. A second streptomycin resistance gene from Streptomyces griseus codes for streptomycin-3"-phosphotransferase. Relationships between antibiotic and protein kinases.
    Heinzel P; Werbitzky O; Distler J; Piepersberg W
    Arch Microbiol; 1988; 150(2):184-92. PubMed ID: 2844130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Properties of ribosomes from Streptomyces erythreus and Streptomyces griseus.
    Teraoka H; Tanaka K
    J Bacteriol; 1974 Oct; 120(1):316-21. PubMed ID: 4138441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aminoglycoside-resistant mutation of Pseudomonas aeruginosa defective in cytochrome c552 and nitrate reductase.
    Bryan LE; Nicas T; Holloway BW; Crowther C
    Antimicrob Agents Chemother; 1980 Jan; 17(1):71-9. PubMed ID: 6243453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Streptomycylamines: difference in activity and mode of action between short-chain and long-chain derivatives.
    Heding H; Diedrichsen A
    J Antibiot (Tokyo); 1975 Apr; 28(4):312-6. PubMed ID: 1099060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New antibiotic-producing streptomycetes, selected by antibiotic resistance as a marker. I. New antibiotic production generated by protoplast fusion treatment between Streptomyces griseus and S. tenjimariensis.
    Yamashita F; Hotta K; Kurasawa S; Okami Y; Umezawa H
    J Antibiot (Tokyo); 1985 Jan; 38(1):58-63. PubMed ID: 3972729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding of dihydrostreptomycin to Escherichia coli ribosomes: characteristics and equilibrium of the reaction.
    Chang FN; Flaks JG
    Antimicrob Agents Chemother; 1972 Oct; 2(4):294-307. PubMed ID: 4133236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [3H] dihydrostreptomycin accumulation and binding to ribosomes in Rhizobium mutants with different levels of streptomycin resistance.
    Zelazna-Kowalska I
    J Bacteriol; 1977 Oct; 132(1):8-12. PubMed ID: 72064
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Genetic instability of the feature of streptomycin resistance in Streptomyces erythraeus].
    Zavorotnaia SA; Fedorenko VA; Danilenko VN
    Antibiot Khimioter; 1990 Dec; 35(12):18-21. PubMed ID: 2078071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Possible evolutionary relationships between streptomycin and bluensomycin biosynthetic pathways: detection of novel inositol kinase and O-carbamoyltransferase activities.
    Walker JB
    J Bacteriol; 1990 Oct; 172(10):5844-51. PubMed ID: 1698764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential binding of streptomycin to ribosomes of polyamine-deficient bacteria grown in the absence and presence of putrescine.
    Goldemberg SH; Fernandez-Velasco JG; Algranati ID
    FEBS Lett; 1982 Jun; 142(2):275-9. PubMed ID: 6179799
    [No Abstract]   [Full Text] [Related]  

  • 31. Contribution to the study of live streptomycin-dependent Salmonella vaccines: the problem of reversion to a virulent form.
    Vladoianu IR; Dubini F; Bolloli A
    J Hyg (Lond); 1975 Oct; 75(2):203-14. PubMed ID: 1100711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transamidinase activity of hyphal fractions of a streptomycin-producing Streptomyces griseus strain and enhancement of enzyme activity in a nonproducing mutant.
    Barabás G; Szeszák F; Szabó G
    Antimicrob Agents Chemother; 1974 Jul; 6(1):11-5. PubMed ID: 15828164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of low concentrations of dihydrostreptomycin on drug resistance in enteric bacteria.
    Gaines SA; Rollins LD; Silver RP; Washington M
    Antimicrob Agents Chemother; 1978 Aug; 14(2):252-6. PubMed ID: 80973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of competitive action of streptomycin 6-kinase and streptomycin 6-phosphatase in the in vitro protein synthesis of a streptomycin-producing microorganism.
    Sugiyama M; Mochizuki H; Nimi O; Nomi R
    FEBS Lett; 1982 Mar; 139(2):331-3. PubMed ID: 6176471
    [No Abstract]   [Full Text] [Related]  

  • 35. Paromomycin and dihydrostreptomycin binding to Escherichia coli ribosomes.
    Lando D; Cousin MA; Ojasoo T; Raymond JP
    Eur J Biochem; 1976 Jul; 66(3):597-606. PubMed ID: 60235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of aminoglycoside antibiotic resistance in anaerobic bacteria: Clostridium perfringens and Bacteroides fragilis.
    Bryan LE; Kowand SK; Van Den Elzen HM
    Antimicrob Agents Chemother; 1979 Jan; 15(1):7-13. PubMed ID: 218500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. R factor-mediated resistance to aminoglycoside antibiotics in Pseudomonas aeruginosa.
    Sagai H; Krcmery V; Hasuda K; Iyobe S; Knothe H
    Jpn J Microbiol; 1975 Dec; 19(6):427-32. PubMed ID: 820894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of streptomycin(SM)-resistance of highly SM-resistant Pseudomonas aeruginosa strains.
    Kono M; O'Hara K
    J Antibiot (Tokyo); 1976 Feb; 29(2):169-75. PubMed ID: 819408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of chloramphenicol production in strains of Streptomyces species 3022alpha treated with acriflavine and ethidium bromide.
    Michelson AM; Vining LC
    Can J Microbiol; 1978 Jun; 24(6):662-9. PubMed ID: 667733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of neomycin and protein S1 on the binding of streptomycin to the ribosome.
    Grisé-Miron L; Brakier-Gingras L
    Eur J Biochem; 1982 Apr; 123(3):643-6. PubMed ID: 6176448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.