BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2260279)

  • 1. Fate and uptake of soluble and particulate antigens in the preparturient bovine mammary gland.
    Nashar TO; Williams MR; Brown PJ; Cripps PJ; Stokes CR
    Vet Immunol Immunopathol; 1990 Oct; 26(2):125-41. PubMed ID: 2260279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immune responses to intramammary infusion with soluble (ovalbumin) and particulate (S uberis) antigens in the preparturient bovine udder.
    Nashar TO; Stokes CR; Cripps PJ
    Res Vet Sci; 1991 Mar; 50(2):145-51. PubMed ID: 2034893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MHC class II expression in the bovine mammary gland.
    Fitzpatrick JL; Cripps PJ; Hill AW; Bland PW; Stokes CR
    Vet Immunol Immunopathol; 1992 Apr; 32(1-2):13-23. PubMed ID: 1604796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lymphocytes from one side of the bovine mammary gland migrate to the contra lateral gland and lymph node tissue.
    Kimura K; Harp JA; Goff JP; Olsen SC
    Vet Immunol Immunopathol; 2005 Dec; 108(3-4):409-15. PubMed ID: 16111770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective effect of anti-SUAM antibodies on Streptococcus uberis mastitis.
    Almeida RA; Kerro-Dego O; Prado ME; Headrick SI; Lewis MJ; Siebert LJ; Pighetti GM; Oliver SP
    Vet Res; 2015 Nov; 46():133. PubMed ID: 26582308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of bovine lactoferrin by the intramammary infusion in cows with staphylococcal mastitis during the early non-lactating period.
    Kai K; Komine Y; Komine K; Asai K; Kuroishi T; Kozutsumi T; Itagaki M; Ohta M; Kumagai K
    J Vet Med Sci; 2002 Oct; 64(10):873-8. PubMed ID: 12419862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antigen-Specific Mammary Inflammation Depends on the Production of IL-17A and IFN-γ by Bovine CD4+ T Lymphocytes.
    Rainard P; Cunha P; Ledresseur M; Staub C; Touzé JL; Kempf F; Gilbert FB; Foucras G
    PLoS One; 2015; 10(9):e0137755. PubMed ID: 26375594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuberculin elicited cellular immune response in the lactating bovine mammary gland vaccinated intramammarily with Mycobacterium bovis.
    Nickerson SC; Nonnecke BJ
    Vet Immunol Immunopathol; 1986 Sep; 13(1-2):39-50. PubMed ID: 3532515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathological changes in bovine mammary glands following intramammary infusion of recombinant interleukin-2.
    Sordillo LM; Snider M; Hughes H; Afseth G; Campos M; Babiuk LA
    J Dairy Sci; 1991 Dec; 74(12):4164-74. PubMed ID: 1787187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesion molecule expression in the bovine mammary gland.
    Hodgkinson AJ; Carpenter EA; Smith CS; Molan PC; Prosser CG
    Vet Immunol Immunopathol; 2007 Feb; 115(3-4):205-15. PubMed ID: 17173979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histologic response of the heifer mammary gland to intramammary infusion of interleukin-2 or interferon-gamma.
    Quiroga GH; Nickerson SC; Adkinson RW
    J Dairy Sci; 1993 Oct; 76(10):2913-24. PubMed ID: 8227619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of stage of lactation on transport of colloidal carbon or Staphylococcus aureus from the mammary gland lumen to lymph nodes in guinea pigs.
    Schenkman DI; Berman DT; Yandell BS
    J Dairy Res; 1985 Nov; 52(4):491-500. PubMed ID: 4078115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitization of the bovine mammary gland to Escherichia coli endotoxin.
    Rainard P; Paape MJ
    Vet Res; 1997; 28(3):231-8. PubMed ID: 9208443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of phagocytosis and chemiluminescence by blood and mammary gland neutrophils from multiparous and nulliparous cows.
    Dulin AM; Paape MJ; Nickerson SC
    Am J Vet Res; 1988 Feb; 49(2):172-7. PubMed ID: 3279871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland.
    Chaneton L; Tirante L; Maito J; Chaves J; Bussmann LE
    J Dairy Sci; 2008 May; 91(5):1865-73. PubMed ID: 18420617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical note: Development of a challenge model for Streptococcus uberis mastitis in dairy heifers.
    Jackson KA; Nickerson SC; Kautz FM; Hurley DJ
    J Dairy Sci; 2012 Dec; 95(12):7210-3. PubMed ID: 23040028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bactericidal activity of macrophages against Streptococcus uberis is different in mammary gland secretions of lactating and drying off cows.
    Denis M; Parlane NA; Lacy-Hulbert SJ; Summers EL; Buddle BM; Wedlock DN
    Vet Immunol Immunopathol; 2006 Nov; 114(1-2):111-20. PubMed ID: 16949677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innate and Adaptive Immunity Synergize to Trigger Inflammation in the Mammary Gland.
    Rainard P; Cunha P; Gilbert FB
    PLoS One; 2016; 11(4):e0154172. PubMed ID: 27100324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of local immunization of the mammary gland on phagocytosis and intracellular kill of Staphylococcus aureus by polymorphonuclear neutrophils.
    Guidry AJ; Paape MJ; Pearson RE; Williams WF
    Am J Vet Res; 1980 Sep; 41(9):1427-31. PubMed ID: 7192523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model.
    Swanson KM; Stelwagen K; Dobson J; Henderson HV; Davis SR; Farr VC; Singh K
    J Dairy Sci; 2009 Jan; 92(1):117-29. PubMed ID: 19109270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.