These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22604724)

  • 1. Roton-type mode softening in a quantum gas with cavity-mediated long-range interactions.
    Mottl R; Brennecke F; Baumann K; Landig R; Donner T; Esslinger T
    Science; 2012 Jun; 336(6088):1570-3. PubMed ID: 22604724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Softening of roton and phonon modes in a Bose-Einstein condensate with spin-orbit coupling.
    Ji SC; Zhang L; Xu XT; Wu Z; Deng Y; Chen S; Pan JW
    Phys Rev Lett; 2015 Mar; 114(10):105301. PubMed ID: 25815940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of Roton Mode Population in a Dipolar Quantum Gas.
    Chomaz L; van Bijnen RMW; Petter D; Faraoni G; Baier S; Becher JH; Mark MJ; Wächtler F; Santos L; Ferlaino F
    Nat Phys; 2018 May; 14(5):442-446. PubMed ID: 29861780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.
    Greiner M; Mandel O; Esslinger T; Hänsch TW; Bloch I
    Nature; 2002 Jan; 415(6867):39-44. PubMed ID: 11780110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the Roton Excitation Spectrum of a Stable Dipolar Bose Gas.
    Petter D; Natale G; van Bijnen RMW; Patscheider A; Mark MJ; Chomaz L; Ferlaino F
    Phys Rev Lett; 2019 May; 122(18):183401. PubMed ID: 31144863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavity QED with a Bose-Einstein condensate.
    Brennecke F; Donner T; Ritter S; Bourdel T; Köhl M; Esslinger T
    Nature; 2007 Nov; 450(7167):268-71. PubMed ID: 17994093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roton-maxon excitation spectrum of Bose condensates in a shaken optical lattice.
    Ha LC; Clark LW; Parker CV; Anderson BM; Chin C
    Phys Rev Lett; 2015 Feb; 114(5):055301. PubMed ID: 25699451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong dipolar effects in a quantum ferrofluid.
    Lahaye T; Koch T; Fröhlich B; Fattori M; Metz J; Griesmaier A; Giovanazzi S; Pfau T
    Nature; 2007 Aug; 448(7154):672-5. PubMed ID: 17687319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dicke quantum phase transition with a superfluid gas in an optical cavity.
    Baumann K; Guerlin C; Brennecke F; Esslinger T
    Nature; 2010 Apr; 464(7293):1301-6. PubMed ID: 20428162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates.
    Henkel N; Nath R; Pohl T
    Phys Rev Lett; 2010 May; 104(19):195302. PubMed ID: 20866972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Critical Behavior of Entanglement in Lattice Bosons with Cavity-Mediated Long-Range Interactions.
    Sharma S; Jäger SB; Kraus R; Roscilde T; Morigi G
    Phys Rev Lett; 2022 Sep; 129(14):143001. PubMed ID: 36240423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using photoemission spectroscopy to probe a strongly interacting Fermi gas.
    Stewart JT; Gaebler JP; Jin DS
    Nature; 2008 Aug; 454(7205):744-7. PubMed ID: 18685703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent zero-state and pi-state in an exciton-polariton condensate array.
    Lai CW; Kim NY; Utsunomiya S; Roumpos G; Deng H; Fraser MD; Byrnes T; Recher P; Kumada N; Fujisawa T; Yamamoto Y
    Nature; 2007 Nov; 450(7169):529-32. PubMed ID: 18033292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stripe phase with supersolid properties in spin-orbit-coupled Bose-Einstein condensates.
    Li JR; Lee J; Huang W; Burchesky S; Shteynas B; Top FÇ; Jamison AO; Ketterle W
    Nature; 2017 Mar; 543(7643):91-94. PubMed ID: 28252062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roton-Induced Bose Polaron in the Presence of Synthetic Spin-Orbit Coupling.
    Wang J; Liu XJ; Hu H
    Phys Rev Lett; 2019 Nov; 123(21):213401. PubMed ID: 31809177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic computational model of a superfluid.
    Ovchinnikov M; Novikov A
    J Chem Phys; 2010 Jun; 132(21):214101. PubMed ID: 20528012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavity-mediated near-critical dissipative dynamics of a driven condensate.
    Kulkarni M; Öztop B; Türeci HE
    Phys Rev Lett; 2013 Nov; 111(22):220408. PubMed ID: 24329433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation Spectrum of a Trapped Dipolar Supersolid and Its Experimental Evidence.
    Natale G; van Bijnen RMW; Patscheider A; Petter D; Mark MJ; Chomaz L; Ferlaino F
    Phys Rev Lett; 2019 Aug; 123(5):050402. PubMed ID: 31491290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vortices and superfluidity in a strongly interacting Fermi gas.
    Zwierlein MW; Abo-Shaeer JR; Schirotzek A; Schunck CH; Ketterle W
    Nature; 2005 Jun; 435(7045):1047-51. PubMed ID: 15973400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fate of the Amplitude Mode in a Trapped Dipolar Supersolid.
    Hertkorn J; Böttcher F; Guo M; Schmidt JN; Langen T; Büchler HP; Pfau T
    Phys Rev Lett; 2019 Nov; 123(19):193002. PubMed ID: 31765213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.