These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 22604890)
1. Comparison of various approaches to calculating the optimal hematocrit in vertebrates. Stark H; Schuster S J Appl Physiol (1985); 2012 Aug; 113(3):355-67. PubMed ID: 22604890 [TBL] [Abstract][Full Text] [Related]
2. What can we learn from Einstein and Arrhenius about the optimal flow of our blood? Schuster S; Stark H Biochim Biophys Acta; 2014 Jan; 1840(1):271-6. PubMed ID: 24021886 [TBL] [Abstract][Full Text] [Related]
3. Optimal hematocrit theory: a review. Sitina M; Stark H; Schuster S J Appl Physiol (1985); 2024 Sep; 137(3):494-509. PubMed ID: 38813609 [TBL] [Abstract][Full Text] [Related]
4. [Importance of non-Newtonian rheologic properties of blood in erythrocyte transport]. Wang X; Stoltz JF J Mal Vasc; 1994; 19(2):137-41. PubMed ID: 8077863 [TBL] [Abstract][Full Text] [Related]
5. Optimal hematocrit: a Procrustean bed for maximum oxygen transport rate? Pasipoularides A J Appl Physiol (1985); 2012 Aug; 113(3):353-4. PubMed ID: 22678962 [No Abstract] [Full Text] [Related]
6. Hematological and blood viscosity changes in tail-suspended rats. Saunders DK; Roberts AC; Aldrich KJ; Cuthbertson B Aviat Space Environ Med; 2002 Jul; 73(7):647-53. PubMed ID: 12137100 [TBL] [Abstract][Full Text] [Related]
8. Unloading oxygen in a capillary vessel under a pathological condition. Escobar C; Méndez F Math Biosci; 2008 Oct; 215(2):127-36. PubMed ID: 18694766 [TBL] [Abstract][Full Text] [Related]
9. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile. Stoltz JF; Donner M Schweiz Med Wochenschr Suppl; 1991; 43():41-9. PubMed ID: 1843037 [TBL] [Abstract][Full Text] [Related]
10. Impact of the Fåhraeus effect on NO and O2 biotransport: a computer model. Lamkin-Kennard KA; Jaron D; Buerk DG Microcirculation; 2004 Jun; 11(4):337-49. PubMed ID: 15280073 [TBL] [Abstract][Full Text] [Related]
11. Erythrocyte transport efficacy of human blood: a rheological point of view. Bogar L; Juricskay I; Kesmarky G; Kenyeres P; Toth K Eur J Clin Invest; 2005 Nov; 35(11):687-90. PubMed ID: 16269018 [TBL] [Abstract][Full Text] [Related]
12. [Theoretical, experimental and clinical effects of variations in hematocrit during hemodilution]. Duruble M; Martin JL; Duvelleroy M Ann Anesthesiol Fr; 1979; 20(9):805-14. PubMed ID: 45290 [TBL] [Abstract][Full Text] [Related]
13. Distributions of rheological parameters in populations of human erythrocytes. Lisovskaya IL; Shurkhina ES; Yakovenko EE; Tsvetaeva NV; Kolodei SV; Shcherbinina SP; Ataullakhanov FI Biorheology; 1999; 36(4):299-309. PubMed ID: 10690266 [TBL] [Abstract][Full Text] [Related]
14. Calculating the optimal hematocrit under the constraint of constant cardiac power. Sitina M; Stark H; Schuster S Sci Rep; 2021 Feb; 11(1):3925. PubMed ID: 33594139 [TBL] [Abstract][Full Text] [Related]
15. Kinetic theory based model for blood flow and its viscosity. Gidaspow D; Huang J Ann Biomed Eng; 2009 Aug; 37(8):1534-45. PubMed ID: 19479375 [TBL] [Abstract][Full Text] [Related]
16. [Microrheology of blood in capillaries (author's transl)]. Gaehtgens P Arzneimittelforschung; 1981; 31(11a):1995-8. PubMed ID: 7199287 [TBL] [Abstract][Full Text] [Related]
17. The hematocrit paradox--how does blood doping really work? Böning D; Maassen N; Pries A Int J Sports Med; 2011 Apr; 32(4):242-6. PubMed ID: 20617487 [TBL] [Abstract][Full Text] [Related]
18. Hemorheological correlates of fitness and unfitness in athletes: moving beyond the apparent "paradox of hematocrit"? Gaudard A; Varlet-Marie E; Bressolle F; Mercier J; Brun JF Clin Hemorheol Microcirc; 2003; 28(3):161-73. PubMed ID: 12775898 [TBL] [Abstract][Full Text] [Related]