These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22605558)

  • 1. Differentially degradable janus particles for controlled release applications.
    Hwang S; Lahann J
    Macromol Rapid Commun; 2012 Jul; 33(14):1178-83. PubMed ID: 22605558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications.
    Rahmani S; Villa CH; Dishman AF; Grabowski ME; Pan DC; Durmaz H; Misra AC; Colón-Meléndez L; Solomon MJ; Muzykantov VR; Lahann J
    J Drug Target; 2015; 23(7-8):750-8. PubMed ID: 26453170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled microstructuring of janus particles based on a multifunctional poly(ethylene glycol).
    Sokolovskaya E; Yoon J; Misra AC; Bräse S; Lahann J
    Macromol Rapid Commun; 2013 Oct; 34(19):1554-9. PubMed ID: 23982931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compartmentalized photoreactions within compositionally anisotropic Janus microstructures.
    Lee KJ; Hwang S; Yoon J; Bhaskar S; Park TH; Lahann J
    Macromol Rapid Commun; 2011 Mar; 32(5):431-7. PubMed ID: 21433195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimodal delivery of irinotecan from microparticles with two distinct compartments.
    Rahmani S; Park TH; Dishman AF; Lahann J
    J Control Release; 2013 Nov; 172(1):239-245. PubMed ID: 23973814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemo-enzymatic synthesis of degradable PTMC-b-PECA-b-PTMC triblock copolymers and their micelle formation for pH-dependent controlled release.
    Kaihara S; Fisher JP; Matsumura S
    Macromol Biosci; 2009 Jun; 9(6):613-21. PubMed ID: 19148902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of bovine serum albumin complexed with PEG-poly(L-histidine) diblock copolymer in PLGA microspheres.
    Kim JH; Taluja A; Knutson K; Han Bae Y
    J Control Release; 2005 Dec; 109(1-3):86-100. PubMed ID: 16266769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyethyl starch-based polymers for the controlled release of biomacromolecules from hydrogel microspheres.
    Wöhl-Bruhn S; Bertz A; Harling S; Menzel H; Bunjes H
    Eur J Pharm Biopharm; 2012 Aug; 81(3):573-81. PubMed ID: 22579731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel interpenetrating network chitosan-poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine.
    Agnihotri SA; Aminabhavi TM
    Int J Pharm; 2006 Nov; 324(2):103-15. PubMed ID: 16824710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmentally responsive core/shell particles via electrohydrodynamic co-jetting of fully miscible polymer solutions.
    Kazemi A; Lahann J
    Small; 2008 Oct; 4(10):1756-62. PubMed ID: 18819137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of anisotropic nanofiber scaffolds for advanced drug delivery systems.
    Jalani G; Jung CW; Lee JS; Lim DW
    Int J Nanomedicine; 2014; 9 Suppl 1(Suppl 1):33-49. PubMed ID: 24872702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery.
    Koetting MC; Guido JF; Gupta M; Zhang A; Peppas NA
    J Control Release; 2016 Jan; 221():18-25. PubMed ID: 26616761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular gels of poly-α-cyclodextrin and PEO-based copolymers for controlled drug release.
    Simões SM; Veiga F; Ribeiro AC; Figueiras AR; Taboada P; Concheiro A; Alvarez-Lorenzo C
    Eur J Pharm Biopharm; 2014 Aug; 87(3):579-88. PubMed ID: 24769064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpenetrating polymer network (IPN) hydrogel microspheres for oral controlled release application.
    Banerjee S; Siddiqui L; Bhattacharya SS; Kaity S; Ghosh A; Chattopadhyay P; Pandey A; Singh L
    Int J Biol Macromol; 2012 Jan; 50(1):198-206. PubMed ID: 22062120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Evaluation of a PEO-Gellan Gum Semi-Interpenetrating Polymer Network for the Oral Delivery of Sulpiride.
    Hoosain FG; Choonara YE; Kumar P; Tomar LK; Tyagi C; du Toit LC; Pillay V
    AAPS PharmSciTech; 2017 Apr; 18(3):654-670. PubMed ID: 27184677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled release of theophylline through semi-interpenetrating network microspheres of chitosan-(dextran-g-acrylamide).
    Al-Kahtani AA; Sherigara BS
    J Mater Sci Mater Med; 2009 Jul; 20(7):1437-45. PubMed ID: 19252971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparing polymer-based sustained-release systems without exposing proteins to water-oil or water-air interfaces and cross-linking reagents.
    Jin T; Zhu J; Wu F; Yuan W; Geng LL; Zhu H
    J Control Release; 2008 May; 128(1):50-9. PubMed ID: 18417240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled release of a model protein from enzymatically degrading dextran microspheres.
    Franssen O; Stenekes RJ; Hennink WE
    J Control Release; 1999 May; 59(2):219-28. PubMed ID: 10332056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual stimuli-responsive polymeric micelles exhibiting "AND" logic gate for controlled release of adriamycin.
    Wei C; Guo J; Wang C
    Macromol Rapid Commun; 2011 Mar; 32(5):451-5. PubMed ID: 21433198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustained release of protein from poly(ethylene glycol) incorporated amphiphilic comb like polymers.
    Srividhya M; Preethi S; Gnanamani A; Reddy BS
    Int J Pharm; 2006 Dec; 326(1-2):119-27. PubMed ID: 16930885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.