These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22605647)

  • 1. High-efficiency transfection and siRNA-mediated gene knockdown in human pluripotent stem cells.
    Ma Y; Lin H; Qiu C
    Curr Protoc Stem Cell Biol; 2012 May; Chapter 2():Unit 5C.2. PubMed ID: 22605647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GMP scale-up and banking of pluripotent stem cells for cellular therapy applications.
    Ausubel LJ; Lopez PM; Couture LA
    Methods Mol Biol; 2011; 767():147-59. PubMed ID: 21822873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple and efficient cryopreservation method for feeder-free dissociated human induced pluripotent stem cells and human embryonic stem cells.
    Mollamohammadi S; Taei A; Pakzad M; Totonchi M; Seifinejad A; Masoudi N; Baharvand H
    Hum Reprod; 2009 Oct; 24(10):2468-76. PubMed ID: 19602515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of humanized culture medium with plant-derived serum replacement for human pluripotent stem cells.
    Kunova M; Matulka K; Eiselleova L; Trckova P; Hampl A; Dvorak P
    Reprod Biomed Online; 2010 Nov; 21(5):676-86. PubMed ID: 20884295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. siRNA knockdown of gene expression in endothelial cells.
    Dennstedt E; Bryan B
    Methods Mol Biol; 2011; 764():215-22. PubMed ID: 21748643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New culture system for human embryonic stem cells: autologous mesenchymal stem cell feeder without exogenous fibroblast growth factor 2.
    Lee EJ; Kang HJ; Lee HN; Kang SK; Kim KH; Lee SW; Lee G; Park YB; Kim HS
    Differentiation; 2012 Jan; 83(1):92-100. PubMed ID: 22099180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonviral gene delivery in neural progenitors derived from human pluripotent stem cells.
    Dhara SK; Majumder A; Dodla MC; Stice SL
    Methods Mol Biol; 2011; 767():343-54. PubMed ID: 21822887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural induction with a dopaminergic phenotype from human pluripotent stem cells through a feeder-free floating aggregation culture.
    Morizane A; Doi D; Takahashi J
    Methods Mol Biol; 2013; 1018():11-9. PubMed ID: 23681613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derivation of oligodendrocyte progenitor cells from human embryonic stem cells.
    Sharp J; Hatch M; Nistor G; Keirstead H
    Methods Mol Biol; 2011; 767():399-409. PubMed ID: 21822891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Culture, Adaptation, and Expansion of Pluripotent Stem Cells.
    Brehm JL; Ludwig TE
    Methods Mol Biol; 2017; 1590():139-150. PubMed ID: 28353267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laminin-511 but not -332, -111, or -411 enables mouse embryonic stem cell self-renewal in vitro.
    Domogatskaya A; Rodin S; Boutaud A; Tryggvason K
    Stem Cells; 2008 Nov; 26(11):2800-9. PubMed ID: 18757303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency siRNA-based gene knockdown in human embryonic stem cells.
    Ma Y; Jin J; Dong C; Cheng EC; Lin H; Huang Y; Qiu C
    RNA; 2010 Dec; 16(12):2564-9. PubMed ID: 20978109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human neural progenitor cells derived from embryonic stem cells in feeder-free cultures.
    Dhara SK; Hasneen K; Machacek DW; Boyd NL; Rao RR; Stice SL
    Differentiation; 2008 May; 76(5):454-64. PubMed ID: 18177420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfection microarray of human mesenchymal stem cells and on-chip siRNA gene knockdown.
    Yoshikawa T; Uchimura E; Kishi M; Funeriu DP; Miyake M; Miyake J
    J Control Release; 2004 Apr; 96(2):227-32. PubMed ID: 15081214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications.
    Dalby B; Cates S; Harris A; Ohki EC; Tilkins ML; Price PJ; Ciccarone VC
    Methods; 2004 Jun; 33(2):95-103. PubMed ID: 15121163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Culture of human pluripotent stem cells on glass slides for high-resolution imaging.
    Fox V
    Methods Mol Biol; 2011; 767():161-73. PubMed ID: 21822874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human-induced pluripotent stem cells: derivation, propagation, and freezing in serum- and feeder layer-free culture conditions.
    Baharvand H; Totonchi M; Taei A; Seifinejad A; Aghdami N; Salekdeh GH
    Methods Mol Biol; 2010; 584():425-43. PubMed ID: 19907991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autogeneic feeders for the culture of undifferentiated human embryonic stem cells in feeder and feeder-free conditions.
    Choo A; Ngo AS; Ding V; Oh S; Kiang LS
    Methods Cell Biol; 2008; 86():15-28. PubMed ID: 18442642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and Efficient Transfection of Mouse Embryonic Stem Cells Using Non-Viral Reagents.
    Tamm C; Kadekar S; Pijuan-Galitó S; Annerén C
    Stem Cell Rev Rep; 2016 Oct; 12(5):584-591. PubMed ID: 27358240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Culture of human embryonic stem cells on human and mouse feeder cells.
    Dravid G; Hammond H; Cheng L
    Methods Mol Biol; 2006; 331():91-104. PubMed ID: 16881511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.