These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 22605990)

  • 1. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response.
    Szarka A; Tomasskovics B; Bánhegyi G
    Int J Mol Sci; 2012; 13(4):4458-4483. PubMed ID: 22605990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ROS management is mediated by ascorbate-glutathione-α-tocopherol triad in co-ordination with secondary metabolic pathway under cadmium stress in Withania somnifera.
    Mishra B; Chand S; Singh Sangwan N
    Plant Physiol Biochem; 2019 Jun; 139():620-629. PubMed ID: 31035173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions.
    Kumar D; Yusuf MA; Singh P; Sardar M; Sarin NB
    Protoplasma; 2013 Oct; 250(5):1079-89. PubMed ID: 23361901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations.
    Gill SS; Anjum NA; Hasanuzzaman M; Gill R; Trivedi DK; Ahmad I; Pereira E; Tuteja N
    Plant Physiol Biochem; 2013 Sep; 70():204-12. PubMed ID: 23792825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of alpha-tocopherol in plant stress tolerance.
    Munné-Bosch S
    J Plant Physiol; 2005 Jul; 162(7):743-8. PubMed ID: 16008098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carotenoid and superoxide dismutase are the most effective antioxidants participating in ROS scavenging in phenanthrene accumulated wheat leaf.
    Shen Y; Li J; Gu R; Yue L; Wang H; Zhan X; Xing B
    Chemosphere; 2018 Apr; 197():513-525. PubMed ID: 29407813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.
    Gill SS; Tuteja N
    Plant Physiol Biochem; 2010 Dec; 48(12):909-30. PubMed ID: 20870416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants.
    Hasanuzzaman M; Nahar K; Hossain MS; Mahmud JA; Rahman A; Inafuku M; Oku H; Fujita M
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant-lead interactions: Transport, toxicity, tolerance, and detoxification mechanisms.
    Kumar A; Prasad MNV
    Ecotoxicol Environ Saf; 2018 Dec; 166():401-418. PubMed ID: 30290327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal and metal oxide nanoparticles-induced reactive oxygen species: Phytotoxicity and detoxification mechanisms in plant cell.
    Hatami M; Ghorbanpour M
    Plant Physiol Biochem; 2024 Aug; 213():108847. PubMed ID: 38889532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species signaling in plants under abiotic stress.
    Choudhury S; Panda P; Sahoo L; Panda SK
    Plant Signal Behav; 2013 Apr; 8(4):e23681. PubMed ID: 23425848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of short-term salt stress on oxidative stress markers and antioxidant enzymes activity in tocopherol-deficient Arabidopsis thaliana plants.
    Semchuk NM; Vasylyk YV; Lushchak OV; Lushchak VI
    Ukr Biokhim Zh (1999); 2012; 84(4):41-8. PubMed ID: 22946299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in ascorbate, glutathione and α-tocopherol concentrations in the brain regions during normal development and moderate hypoglycemia in rats.
    Rao AR; Quach H; Smith E; Vatassery GT; Rao R
    Neurosci Lett; 2014 May; 568():67-71. PubMed ID: 24686186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants.
    Tavanti TR; Melo AAR; Moreira LDK; Sanchez DEJ; Silva RDS; Silva RMD; Reis ARD
    Plant Physiol Biochem; 2021 Mar; 160():386-396. PubMed ID: 33556754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxalate at physiological urine concentrations induces oxidative injury in renal epithelial cells: effect of α-tocopherol and ascorbic acid.
    Thamilselvan V; Menon M; Thamilselvan S
    BJU Int; 2014 Jul; 114(1):140-50. PubMed ID: 24460843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress mitigation and initiation of antioxidant and osmoprotectant responses mediated by ascorbic acid in Brassica juncea L. subjected to copper (II) stress.
    Sharma R; Bhardwaj R; Thukral AK; Al-Huqail AA; Siddiqui MH; Ahmad P
    Ecotoxicol Environ Saf; 2019 Oct; 182():109436. PubMed ID: 31325808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ascorbate uptake and antioxidant function in peritoneal macrophages.
    May JM; Li L; Qu ZC; Huang J
    Arch Biochem Biophys; 2005 Aug; 440(2):165-72. PubMed ID: 16054587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining Glutathione Levels in Plants.
    Sahoo S; Awasthi JP; Sunkar R; Panda SK
    Methods Mol Biol; 2017; 1631():273-277. PubMed ID: 28735403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity.
    Garg N; Bhandari P
    Protoplasma; 2016 Sep; 253(5):1325-45. PubMed ID: 26468060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective role of ascorbic acid and alpha-tocopherol on arsenic-induced microsomal dysfunctions.
    Ramanathan K; Shila S; Kumaran S; Panneerselvam C
    Hum Exp Toxicol; 2003 Mar; 22(3):129-36. PubMed ID: 12723893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.