These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 22606030)
1. Preparation and characterization of micronized artemisinin via a Rapid Expansion of Supercritical Solutions (RESS) Method. Yu H; Zhao X; Zu Y; Zhang X; Zu B; Zhang X Int J Mol Sci; 2012; 13(4):5060-5073. PubMed ID: 22606030 [TBL] [Abstract][Full Text] [Related]
2. Micronization of dihydroartemisinin by rapid expansion of supercritical solutions. Chingunpitak J; Puttipipatkhachorn S; Tozuka Y; Moribe K; Yamamoto K Drug Dev Ind Pharm; 2008 Jun; 34(6):609-17. PubMed ID: 18568911 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the Potential Use of Laminar Extrudates on Stabilizing Micronized Coumarin Particles by Supercritical Fluids (RESS)-Study of Different RESS Processing Variables and Mode of Operation. Oliveira GE; Pinto JF AAPS PharmSciTech; 2017 Oct; 18(7):2792-2807. PubMed ID: 28382603 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS). Müllers KC; Paisana M; Wahl MA Pharm Res; 2015 Feb; 32(2):702-13. PubMed ID: 25213775 [TBL] [Abstract][Full Text] [Related]
5. Polymorphic properties of micronized carbamazepine produced by RESS. Gosselin PM; Thibert R; Preda M; McMullen JN Int J Pharm; 2003 Feb; 252(1-2):225-33. PubMed ID: 12550798 [TBL] [Abstract][Full Text] [Related]
6. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process. Thakur R; Gupta RB Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406 [TBL] [Abstract][Full Text] [Related]
7. [Micronization of magnolia bark extract by RESS as well as dissolution and pharmacokinetics evaluation]. He S; Lei ZJ; Zhang SY; Zhang ZY Yao Xue Xue Bao; 2009 May; 44(5):532-9. PubMed ID: 19618732 [TBL] [Abstract][Full Text] [Related]
8. Micronization and microencapsulation of felodipine by supercritical carbon dioxide. Chiou AH; Cheng HC; Wang DP J Microencapsul; 2006 May; 23(3):265-76. PubMed ID: 16801239 [TBL] [Abstract][Full Text] [Related]
9. Micronization of phenylbutazone by rapid expansion of supercritical CO2 solution. Moribe K; Tsutsumi S; Morishita S; Shinozaki H; Tozuka Y; Oguchi T; Yamamoto K Chem Pharm Bull (Tokyo); 2005 Aug; 53(8):1025-8. PubMed ID: 16079541 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles. Perrut M; Jung J; Leboeuf F Int J Pharm; 2005 Jan; 288(1):3-10. PubMed ID: 15607252 [TBL] [Abstract][Full Text] [Related]
11. In vitro dissolution enhancement of micronized l-nimodipine by antisolvent re-crystallization from its crystal form H. Zu Y; Li N; Zhao X; Li Y; Ge Y; Wang W; Wang K; Liu Y Int J Pharm; 2014 Apr; 464(1-2):1-9. PubMed ID: 24456674 [TBL] [Abstract][Full Text] [Related]
12. Formation and Characterization of Beclomethasone Dipropionate Nanoparticles Using Rapid Expansion of Supercritical Solution. Hosseinpour M; Vatanara A; Zarghami R Adv Pharm Bull; 2015 Sep; 5(3):343-9. PubMed ID: 26504756 [TBL] [Abstract][Full Text] [Related]
13. Micronization of magnolia bark extract with enhanced dissolution behavior by rapid expansion of supercritical solution. He S; Zhang Z; Xu F; Zhang S; Lei Z Chem Pharm Bull (Tokyo); 2010 Feb; 58(2):154-9. PubMed ID: 20118572 [TBL] [Abstract][Full Text] [Related]
14. Preparation of Erlotinib hydrochloride nanoparticles (anti-cancer drug) by RESS-C method and investigating the effective parameters. Bazaei M; Honarvar B; Esfandiari N; Sajadian SA; Arab Aboosadi Z Sci Rep; 2024 Jun; 14(1):14955. PubMed ID: 38942802 [TBL] [Abstract][Full Text] [Related]
15. Crystal doping aided by rapid expansion of supercritical solutions. Vemavarapu C; Mollan MJ; Needham TE AAPS PharmSciTech; 2002; 3(4):E29. PubMed ID: 12916923 [TBL] [Abstract][Full Text] [Related]
16. Application of Box-Behnken Design to Investigate the Effect of Process Parameters on the Microparticle Production of Ethenzamide through the Rapid Expansion of the Supercritical Solutions Process. Hsu YT; Su CS Pharmaceutics; 2020 Jan; 12(1):. PubMed ID: 31947846 [TBL] [Abstract][Full Text] [Related]
17. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production. Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656 [TBL] [Abstract][Full Text] [Related]
18. Micronization and polymorphic conversion of tolbutamide and barbital by rapid expansion of supercritical solutions. Shinozaki H; Oguchi T; Suzuki S; Aoki K; Sako T; Morishita S; Tozuka Y; Moribe K; Yamamoto K Drug Dev Ind Pharm; 2006 Aug; 32(7):877-91. PubMed ID: 16908425 [TBL] [Abstract][Full Text] [Related]
19. Characterization and pharmacokinetics of coenzyme Q10 nanoparticles prepared by a rapid expansion of supercritical solution process. Meng X; Zu Y; Zhao X; Li Q; Jiang S; Sang M Pharmazie; 2012 Feb; 67(2):161-7. PubMed ID: 22512087 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous micronization and surface modification for improvement of flow and dissolution of drug particles. Han X; Ghoroi C; To D; Chen Y; Davé R Int J Pharm; 2011 Aug; 415(1-2):185-95. PubMed ID: 21664954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]