These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 22606030)
21. Production of cromolyn sodium microparticles for aerosol delivery by supercritical assisted atomization. Reverchon E; Adami R; Caputo G AAPS PharmSciTech; 2007 Dec; 8(4):E114. PubMed ID: 18181535 [TBL] [Abstract][Full Text] [Related]
22. Formation of ultrafine deferasirox particles via rapid expansion of supercritical solution (RESS process) using Taguchi approach. Asghari I; Esmaeilzadeh F Int J Pharm; 2012 Aug; 433(1-2):149-56. PubMed ID: 22583849 [TBL] [Abstract][Full Text] [Related]
23. Physicochemical evaluation of carbamazepine microparticles produced by the rapid expansion of supercritical solutions and by spray-drying. Gosselin P; Lacasse FX; Preda M; Thibert R; Clas SD; McMullen JN Pharm Dev Technol; 2003; 8(1):11-20. PubMed ID: 12665193 [TBL] [Abstract][Full Text] [Related]
24. Improvement of the dissolution rate of artemisinin by means of supercritical fluid technology and solid dispersions. Van Nijlen T; Brennan K; Van den Mooter G; Blaton N; Kinget R; Augustijns P Int J Pharm; 2003 Mar; 254(2):173-81. PubMed ID: 12623193 [TBL] [Abstract][Full Text] [Related]
25. [Application of supercritical solution rapid expansion technology in preparation of fine pharmacal particles]. Zhang ZY; Li HL; Lei ZJ Zhongguo Zhong Yao Za Zhi; 2006 Dec; 31(23):1933-6. PubMed ID: 17348181 [TBL] [Abstract][Full Text] [Related]
26. Application of dense gas techniques for the production of fine particles. Foster NR; Dehghani F; Charoenchaitrakoo KM; Warwick B AAPS PharmSci; 2003; 5(2):E11. PubMed ID: 12866938 [TBL] [Abstract][Full Text] [Related]
27. [Preparation of nanopaticles of SCF-CO2 extraction of Magnolia officinalis]. He S; Zhang S; Lei Z; Zhang Z Zhongguo Zhong Yao Za Zhi; 2009 Feb; 34(4):390-3. PubMed ID: 19459296 [TBL] [Abstract][Full Text] [Related]
28. A critical review on the particle generation and other applications of rapid expansion of supercritical solution. Kumar R; Thakur AK; Banerjee N; Chaudhari P Int J Pharm; 2021 Oct; 608():121089. PubMed ID: 34530097 [TBL] [Abstract][Full Text] [Related]
29. Preparation and characterization of micronized ellagic acid using antisolvent precipitation for oral delivery. Li Y; Zhao X; Zu Y; Zhang Y; Ge Y; Zhong C; Wu W Int J Pharm; 2015; 486(1-2):207-16. PubMed ID: 25841566 [TBL] [Abstract][Full Text] [Related]
30. Supercritical carbon dioxide solubility measurement and modelling for effective size reduction of nifedipine particles for transdermal application. Massias T; de Paiva Lacerda S; Resende de Azevedo J; Letourneau JJ; Bolzinger MA; Espitalier F Int J Pharm; 2023 Jan; 630():122425. PubMed ID: 36436744 [TBL] [Abstract][Full Text] [Related]
31. Determination of antimalarial compound, ARB-89 (7β-hydroxy-artemisinin carbamate) in rat serum by UPLC/MS/MS and its application in pharmacokinetics. Pabbisetty D; Illendula A; Muraleedharan KM; Chittiboyina AG; Williamson JS; Avery MA; Avery BA J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Mar; 889-890():123-9. PubMed ID: 22365535 [TBL] [Abstract][Full Text] [Related]
32. Application of hot melt extrusion for improving bioavailability of artemisinin a thermolabile drug. Kulkarni C; Kelly AL; Gough T; Jadhav V; Singh KK; Paradkar A Drug Dev Ind Pharm; 2018 Feb; 44(2):206-214. PubMed ID: 29145748 [TBL] [Abstract][Full Text] [Related]
33. Trends on the Rapid Expansion of Supercritical Solutions Process Applied to Food and Non-food Industries. Gomes MTMS; Santana ÁL; Santos DT; Meireles MAA Recent Pat Food Nutr Agric; 2019; 10(2):82-92. PubMed ID: 30255763 [TBL] [Abstract][Full Text] [Related]
34. In situ optical monitoring of RDX nanoparticles formation during rapid expansion of supercritical CO2 solutions. Matsunaga T; Chernyshev AV; Chesnokov EN; Krasnoperov LN Phys Chem Chem Phys; 2007 Oct; 9(38):5249-59. PubMed ID: 19459288 [TBL] [Abstract][Full Text] [Related]
35. Artemisinin nanoformulation suitable for intravenous injection: Preparation, characterization and antimalarial activities. Ibrahim N; Ibrahim H; Sabater AM; Mazier D; Valentin A; Nepveu F Int J Pharm; 2015 Nov; 495(2):671-9. PubMed ID: 26383839 [TBL] [Abstract][Full Text] [Related]
36. FABRICATION AND EVALUATION OF SMART NANOCRYSTALS OF ARTEMISININ FOR ANTIMALARIAL AND ANTIBACTERIAL EFFICACY. Shah SMH; Ullah F; Khan S; Shah SMM; Isreb M Afr J Tradit Complement Altern Med; 2017; 14(1):251-262. PubMed ID: 28480403 [TBL] [Abstract][Full Text] [Related]
37. Preparation and characterisation of hydrocortisone particles using a supercritical fluids extraction process. Velaga SP; Ghaderi R; Carlfors J Int J Pharm; 2002 Jan; 231(2):155-66. PubMed ID: 11755268 [TBL] [Abstract][Full Text] [Related]
38. Micronization of drugs using supercritical carbon dioxide. Kerc J; Srcic S; Knez Z; Sencar-Bozic P Int J Pharm; 1999 May; 182(1):33-9. PubMed ID: 10332072 [TBL] [Abstract][Full Text] [Related]
39. Improved physicochemical characteristics of artemisinin-nicotinamide solid dispersions by solvent evaporation and freeze dried methods. Ansari MT; Pervez H; Shehzad MT; Mahmood Z; Razi MT; Ranjha NM; Khanum N Pak J Pharm Sci; 2012 Apr; 25(2):447-56. PubMed ID: 22459476 [TBL] [Abstract][Full Text] [Related]
40. Preparation and physicochemical properties of 10-hydroxycamptothecin (HCPT) nanoparticles by supercritical antisolvent (SAS) process. Zhao X; Zu Y; Jiang R; Wang Y; Li Y; Li Q; Zhao D; Zu B; Zhang B; Sun Z; Zhang X Int J Mol Sci; 2011; 12(4):2678-91. PubMed ID: 21731466 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]