BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22606040)

  • 1. Enhanced production of a novel cyclic hexapeptide antibiotic (NW-G01) by Streptomyces alboflavus 313 using response surface methodology.
    Guo Z; Shen L; Ji Z; Wu W
    Int J Mol Sci; 2012; 13(4):5230-5241. PubMed ID: 22606040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NW-G01, a novel cyclic hexadepsipeptide antibiotic, produced by Streptomyces alboflavus 313: I. Taxonomy, fermentation, isolation, physicochemical properties and antibacterial activities.
    Guo Z; Shen L; Ji Z; Zhang J; Huang L; Wu W
    J Antibiot (Tokyo); 2009 Apr; 62(4):201-5. PubMed ID: 19265870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NW-G03, a related cyclic hexapeptide compound of NW-G01, produced by Streptomyces alboflavus 313.
    Guo Z; Shen L; Zhang J; Xin H; Liu W; Ji Z; Wu W
    J Antibiot (Tokyo); 2011 Dec; 64(12):789-94. PubMed ID: 22027913
    [No Abstract]   [Full Text] [Related]  

  • 4. NW-G01, a novel cyclic hexapeptide antibiotic, produced by Streptomyces alboflavus 313: II. Structural elucidation.
    Guo Z; Ji Z; Zhang J; Deng J; Shen L; Liu W; Wu W
    J Antibiot (Tokyo); 2010 May; 63(5):231-5. PubMed ID: 20379216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total synthesis of NW-G01, a cyclic hexapeptide antibiotic, and 34-epi-NW-G01.
    Shibahara S; Matsubara T; Takahashi K; Ishihara J; Hatakeyama S
    Org Lett; 2011 Sep; 13(17):4700-3. PubMed ID: 21809853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three novel cyclic hexapeptides from Streptomyces alboflavus 313 and their antibacterial activity.
    Ji Z; Wei S; Fan L; Wu W
    Eur J Med Chem; 2012 Apr; 50():296-303. PubMed ID: 22365561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of medium constituents for ε-poly-L-lysine fermentation with response surface methodology.
    Zong H; He Y; Zhan Y; Du J; Feng F; Li D
    J Food Sci; 2010; 75(9):M552-6. PubMed ID: 21535609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of two novel antibacterial cyclic hexapeptides from Streptomyces alboflavus 313.
    Ji Z; Qiao G; Wei S; Fan L; Wu W
    Chem Biodivers; 2012 Aug; 9(8):1567-78. PubMed ID: 22899617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of tacrolimus production in Streptomyces tsukubaensis by mutagenesis and optimization of fermentation medium using Plackett-Burman design combined with response surface methodology.
    Yan L; Zhang Z; Zhang Y; Yang H; Qiu G; Wang D; Lian Y
    Biotechnol Lett; 2021 Sep; 43(9):1765-1778. PubMed ID: 34021830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of fermentation medium and conditions for enhancing valinomycin production by
    Zhang D; Bao Y; Ma Z; Zhou J; Chen H; Lu Y; Zhu L; Chen X
    Prep Biochem Biotechnol; 2023; 53(2):157-166. PubMed ID: 35323097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling-based optimization approaches for the development of Anti-Agrobacterium tumefaciens activity using Streptomyces sp TN71.
    Smaoui S; Ennouri K; Chakchouk-Mtibaa A; Sellem I; Bouchaala K; Karray-Rebai I; Ben Ayed R; Mathieu F; Mellouli L
    Microb Pathog; 2018 Jun; 119():19-27. PubMed ID: 29626659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two piperazic acid-containing cyclic hexapeptides from Streptomyces alboflavus 313.
    Wei S; Fan L; Wu W; Ji Z
    Amino Acids; 2012 Nov; 43(5):2191-8. PubMed ID: 22543750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the Biosynthesis Conditions of Daptomycin by the Biostatistical Methodology.
    Yu G; Wang G
    Interdiscip Sci; 2017 Mar; 9(1):80-87. PubMed ID: 26582535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medium optimization for ε-poly-L-lysine production by Streptomyces diastatochromogenes using response surface methodology.
    Guo F; Zheng H; Cheng Y; Song S; Zheng Z; Jia S
    Lett Appl Microbiol; 2018 Feb; 66(2):124-131. PubMed ID: 29078007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of actinomycin V production by Streptomyces triostinicus using artificial neural network and genetic algorithm.
    Singh V; Khan M; Khan S; Tripathi CK
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):379-85. PubMed ID: 19137288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-cost fermentation medium for alkaline protease production by Bacillus mojavensis A21 using hulled grain of wheat and sardinella peptone.
    Haddar A; Fakhfakh-Zouari N; Hmidet N; Frikha F; Nasri M; Kamoun AS
    J Biosci Bioeng; 2010 Sep; 110(3):288-94. PubMed ID: 20547353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved antimicrobial compound production by a new isolate Streptomyces hygroscopicus MTCC 4003 using Plackett-Burman design and response Surface methodology.
    Singh N; Rai V
    Bioinformation; 2012; 8(21):1021-5. PubMed ID: 23275700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of xylanase production by Aspergillus niger XY-1 using response surface methodology for optimizing the medium composition.
    Xu YX; Li YL; Xu SC; Liu Y; Wang X; Tang JW
    J Zhejiang Univ Sci B; 2008 Jul; 9(7):558-66. PubMed ID: 18600786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of laccase production from a novel strain-Streptomyces psammoticus using response surface methodology.
    Niladevi KN; Sukumaran RK; Jacob N; Anisha GS; Prema P
    Microbiol Res; 2009; 164(1):105-13. PubMed ID: 17207981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medium optimization based on statistical methodologies for pristinamycins production by Streptomyces pristinaespiralis.
    Jia B; Jin ZH; Mei LH
    Appl Biochem Biotechnol; 2008 Feb; 144(2):133-43. PubMed ID: 18456945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.