BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22606229)

  • 1. Reduced performance of prey targeting in pit vipers with contralaterally occluded infrared and visual senses.
    Chen Q; Deng H; Brauth SE; Ding L; Tang Y
    PLoS One; 2012; 7(5):e34989. PubMed ID: 22606229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The thermal background determines how the infrared and visual systems interact in pit vipers.
    Chen Q; Liu Y; Brauth SE; Fang G; Tang Y
    J Exp Biol; 2017 Sep; 220(Pt 17):3103-3109. PubMed ID: 28855322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared imaging in vipers: differential responses of crotaline and viperine snakes to paired thermal targets.
    Safer AB; Grace MS
    Behav Brain Res; 2004 Sep; 154(1):55-61. PubMed ID: 15302110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Merging of modalities in the optic tectum: infrared and visual integration in rattlesnakes.
    Hartline PH; Kass L; Loop MS
    Science; 1978 Mar; 199(4334):1225-9. PubMed ID: 628839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered visual experience and acute visual deprivation affect predatory targeting by infrared-imaging Boid snakes.
    Grace MS; Woodward OM
    Brain Res; 2001 Nov; 919(2):250-8. PubMed ID: 11701137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prey targeting by the infrared-imaging snake Python molurus: effects of experimental and congenital visual deprivation.
    Grace MS; Woodward OM; Church DR; Calisch G
    Behav Brain Res; 2001 Feb; 119(1):23-31. PubMed ID: 11164522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eye and pit size are inversely correlated in crotalinae: Implications for selection pressure relaxation.
    Liu Y; Chen Q; Papenfuss TJ; Lu F; Tang Y
    J Morphol; 2016 Jan; 277(1):107-17. PubMed ID: 26442780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tecto-rotundo-telencephalic pathway in the rattlesnake: evidence for a forebrain representation of the infrared sense.
    Berson DM; Hartline PH
    J Neurosci; 1988 Mar; 8(3):1074-88. PubMed ID: 3346716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The imaging properties and sensitivity of the facial pits of pitvipers as determined by optical and heat-transfer analysis.
    Bakken GS; Krochmal AR
    J Exp Biol; 2007 Aug; 210(Pt 16):2801-10. PubMed ID: 17690227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared snake eyes: TRPA1 and the thermal sensitivity of the snake pit organ.
    Panzano VC; Kang K; Garrity PA
    Sci Signal; 2010 Jun; 3(127):pe22. PubMed ID: 20571127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of visual and infrared information in bimodal neurons in the rattlesnake optic tectum.
    Newman EA; Hartline PH
    Science; 1981 Aug; 213(4509):789-91. PubMed ID: 7256281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prey envenomation does not improve digestive performance in Taiwanese pit vipers (Trimeresurus gracilis and T. stejnegeri stejnegeri).
    Chu CW; Tsai TS; Tsai IH; Lin YS; Tu MC
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Apr; 152(4):579-85. PubMed ID: 19256079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strike feeding behavior in the muskellunge, Esox masquinongy: contributions of the lateral line and visual sensory systems.
    New JG; Alborg Fewkes L; Khan AN
    J Exp Biol; 2001 Mar; 204(Pt 6):1207-21. PubMed ID: 11222136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum.
    Gahtan E; Tanger P; Baier H
    J Neurosci; 2005 Oct; 25(40):9294-303. PubMed ID: 16207889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A subcortical excitatory circuit for sensory-triggered predatory hunting in mice.
    Shang C; Liu A; Li D; Xie Z; Chen Z; Huang M; Li Y; Wang Y; Shen WL; Cao P
    Nat Neurosci; 2019 Jun; 22(6):909-920. PubMed ID: 31127260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomical and physiological localization of visual and infrared cell layers in tectum of pit vipers.
    Kass L; Loop MS; Hartline PH
    J Comp Neurol; 1978 Dec; 182(4 Pt 2):811-20. PubMed ID: 730849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey.
    Förster D; Helmbrecht TO; Mearns DS; Jordan L; Mokayes N; Baier H
    Elife; 2020 Oct; 9():. PubMed ID: 33044168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-Deoxyglucose labelling of the infrared sensory system in the rattlesnake, Crotalus viridis.
    Gruberg ER; Newman EA; Hartline PH
    J Comp Neurol; 1984 Nov; 229(3):321-8. PubMed ID: 6501607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional and numerical responses of predators: where do vipers fit in the traditional paradigms?
    Nowak EM; Theimer TC; Schuett GW
    Biol Rev Camb Philos Soc; 2008 Nov; 83(4):601-20. PubMed ID: 18947336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal Substrates for Infrared Contrast Enhancement and Motion Detection in Rattlesnakes.
    Bothe MS; Luksch H; Straka H; Kohl T
    Curr Biol; 2019 Jun; 29(11):1827-1832.e4. PubMed ID: 31104931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.