These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22606229)

  • 1. Reduced performance of prey targeting in pit vipers with contralaterally occluded infrared and visual senses.
    Chen Q; Deng H; Brauth SE; Ding L; Tang Y
    PLoS One; 2012; 7(5):e34989. PubMed ID: 22606229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The thermal background determines how the infrared and visual systems interact in pit vipers.
    Chen Q; Liu Y; Brauth SE; Fang G; Tang Y
    J Exp Biol; 2017 Sep; 220(Pt 17):3103-3109. PubMed ID: 28855322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared imaging in vipers: differential responses of crotaline and viperine snakes to paired thermal targets.
    Safer AB; Grace MS
    Behav Brain Res; 2004 Sep; 154(1):55-61. PubMed ID: 15302110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Merging of modalities in the optic tectum: infrared and visual integration in rattlesnakes.
    Hartline PH; Kass L; Loop MS
    Science; 1978 Mar; 199(4334):1225-9. PubMed ID: 628839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered visual experience and acute visual deprivation affect predatory targeting by infrared-imaging Boid snakes.
    Grace MS; Woodward OM
    Brain Res; 2001 Nov; 919(2):250-8. PubMed ID: 11701137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prey targeting by the infrared-imaging snake Python molurus: effects of experimental and congenital visual deprivation.
    Grace MS; Woodward OM; Church DR; Calisch G
    Behav Brain Res; 2001 Feb; 119(1):23-31. PubMed ID: 11164522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eye and pit size are inversely correlated in crotalinae: Implications for selection pressure relaxation.
    Liu Y; Chen Q; Papenfuss TJ; Lu F; Tang Y
    J Morphol; 2016 Jan; 277(1):107-17. PubMed ID: 26442780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tecto-rotundo-telencephalic pathway in the rattlesnake: evidence for a forebrain representation of the infrared sense.
    Berson DM; Hartline PH
    J Neurosci; 1988 Mar; 8(3):1074-88. PubMed ID: 3346716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The imaging properties and sensitivity of the facial pits of pitvipers as determined by optical and heat-transfer analysis.
    Bakken GS; Krochmal AR
    J Exp Biol; 2007 Aug; 210(Pt 16):2801-10. PubMed ID: 17690227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared snake eyes: TRPA1 and the thermal sensitivity of the snake pit organ.
    Panzano VC; Kang K; Garrity PA
    Sci Signal; 2010 Jun; 3(127):pe22. PubMed ID: 20571127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of visual and infrared information in bimodal neurons in the rattlesnake optic tectum.
    Newman EA; Hartline PH
    Science; 1981 Aug; 213(4509):789-91. PubMed ID: 7256281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prey envenomation does not improve digestive performance in Taiwanese pit vipers (Trimeresurus gracilis and T. stejnegeri stejnegeri).
    Chu CW; Tsai TS; Tsai IH; Lin YS; Tu MC
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Apr; 152(4):579-85. PubMed ID: 19256079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strike feeding behavior in the muskellunge, Esox masquinongy: contributions of the lateral line and visual sensory systems.
    New JG; Alborg Fewkes L; Khan AN
    J Exp Biol; 2001 Mar; 204(Pt 6):1207-21. PubMed ID: 11222136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum.
    Gahtan E; Tanger P; Baier H
    J Neurosci; 2005 Oct; 25(40):9294-303. PubMed ID: 16207889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A subcortical excitatory circuit for sensory-triggered predatory hunting in mice.
    Shang C; Liu A; Li D; Xie Z; Chen Z; Huang M; Li Y; Wang Y; Shen WL; Cao P
    Nat Neurosci; 2019 Jun; 22(6):909-920. PubMed ID: 31127260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomical and physiological localization of visual and infrared cell layers in tectum of pit vipers.
    Kass L; Loop MS; Hartline PH
    J Comp Neurol; 1978 Dec; 182(4 Pt 2):811-20. PubMed ID: 730849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2-Deoxyglucose labelling of the infrared sensory system in the rattlesnake, Crotalus viridis.
    Gruberg ER; Newman EA; Hartline PH
    J Comp Neurol; 1984 Nov; 229(3):321-8. PubMed ID: 6501607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional and numerical responses of predators: where do vipers fit in the traditional paradigms?
    Nowak EM; Theimer TC; Schuett GW
    Biol Rev Camb Philos Soc; 2008 Nov; 83(4):601-20. PubMed ID: 18947336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal Substrates for Infrared Contrast Enhancement and Motion Detection in Rattlesnakes.
    Bothe MS; Luksch H; Straka H; Kohl T
    Curr Biol; 2019 Jun; 29(11):1827-1832.e4. PubMed ID: 31104931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat in evolution's kitchen: evolutionary perspectives on the functions and origin of the facial pit of pitvipers (Viperidae: Crotalinae).
    Krochmal AR; Bakken GS; LaDuc TJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4231-8. PubMed ID: 15531644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.