These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22606261)

  • 1. Using goal- and grip-related information for understanding the correctness of other's actions: an ERP study.
    van Elk M; Bousardt R; Bekkering H; van Schie HT
    PLoS One; 2012; 7(5):e36450. PubMed ID: 22606261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conceptual knowledge for understanding other's actions is organized primarily around action goals.
    van Elk M; van Schie HT; Bekkering H
    Exp Brain Res; 2008 Jul; 189(1):99-107. PubMed ID: 18521584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural dynamics of grip and goal integration during the processing of others' actions with objects: An ERP study.
    Decroix J; Roger C; Kalénine S
    Sci Rep; 2020 Mar; 10(1):5065. PubMed ID: 32193497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perceptual and motor-based responses to hand actions on objects: evidence from ERPs.
    Kumar S; Yoon EY; Humphreys GW
    Exp Brain Res; 2012 Jul; 220(2):153-64. PubMed ID: 22644235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Event-related brain potentials for goal-related power grips.
    Westerholz J; Schack T; Koester D
    PLoS One; 2013; 8(7):e68501. PubMed ID: 23844211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action Priority: Early Neurophysiological Interaction of Conceptual and Motor Representations.
    Koester D; Schack T
    PLoS One; 2016; 11(12):e0165882. PubMed ID: 27973539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural mechanisms underlying immediate and final action goals in object use reflected by slow wave brain potentials.
    van Schie HT; Bekkering H
    Brain Res; 2007 May; 1148():183-97. PubMed ID: 17412310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pouring or chilling a bottle of wine: an fMRI study on the prospective planning of object-directed actions.
    van Elk M; Viswanathan S; van Schie HT; Bekkering H; Grafton ST
    Exp Brain Res; 2012 Apr; 218(2):189-200. PubMed ID: 22349497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity for grip type and action goal in macaque inferior parietal and ventral premotor grasping neurons.
    Bonini L; Ugolotti Serventi F; Bruni S; Maranesi M; Bimbi M; Simone L; Rozzi S; Ferrari PF; Fogassi L
    J Neurophysiol; 2012 Sep; 108(6):1607-19. PubMed ID: 22745465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Context and hand posture modulate the neural dynamics of tool-object perception.
    Natraj N; Poole V; Mizelle JC; Flumini A; Borghi AM; Wheaton LA
    Neuropsychologia; 2013 Feb; 51(3):506-19. PubMed ID: 23261936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrophysiological study of the object-based correspondence effect: is the effect triggered by an intended grasping action?
    Lien MC; Jardin E; Proctor RW
    Atten Percept Psychophys; 2013 Nov; 75(8):1862-82. PubMed ID: 23918551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions.
    Vesia M; Bolton DA; Mochizuki G; Staines WR
    Neuropsychologia; 2013 Feb; 51(3):410-7. PubMed ID: 23206539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Timing of grip and goal activation during action perception: a priming study.
    Decroix J; Kalénine S
    Exp Brain Res; 2018 Aug; 236(8):2411-2426. PubMed ID: 29909461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of sensorimotor areas in early detection of motor errors: An EEG and TMS study.
    Maffongelli L; Ferrari E; Bartoli E; Campus C; Olivier E; Fadiga L; D'Ausilio A
    Behav Brain Res; 2020 Jan; 378():112248. PubMed ID: 31614184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What first drives visual attention during the recognition of object-directed actions? The role of kinematics and goal information.
    Decroix J; Kalénine S
    Atten Percept Psychophys; 2019 Oct; 81(7):2400-2409. PubMed ID: 31292941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The N400-concreteness effect reflects the retrieval of semantic information during the preparation of meaningful actions.
    van Elk M; van Schie HT; Bekkering H
    Biol Psychol; 2010 Sep; 85(1):134-42. PubMed ID: 20542081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding the activity of grasping neurons recorded from the ventral premotor area F5 of the macaque monkey.
    Carpaneto J; Umiltà MA; Fogassi L; Murata A; Gallese V; Micera S; Raos V
    Neuroscience; 2011 Aug; 188():80-94. PubMed ID: 21575688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurophysiological markers of alert responding during goal-directed behavior: a high-density electrical mapping study.
    Dockree PM; Kelly SP; Robertson IH; Reilly RB; Foxe JJ
    Neuroimage; 2005 Sep; 27(3):587-601. PubMed ID: 16024257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of action experience on sensorimotor EEG rhythms during action observation.
    Quandt LC; Marshall PJ
    Neuropsychologia; 2014 Apr; 56():401-8. PubMed ID: 24568874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Objects rapidly prime the motor system when located near the dominant hand.
    Rowe PJ; Haenschel C; Kosilo M; Yarrow K
    Brain Cogn; 2017 Apr; 113():102-108. PubMed ID: 28167410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.