BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 22606298)

  • 1. Ventx factors function as Nanog-like guardians of developmental potential in Xenopus.
    Scerbo P; Girardot F; Vivien C; Markov GV; Luxardi G; Demeneix B; Kodjabachian L; Coen L
    PLoS One; 2012; 7(5):e36855. PubMed ID: 22606298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Danio rerio Nanog and functional comparison to Xenopus Vents.
    Schuff M; Siegel D; Philipp M; Bundschu K; Heymann N; Donow C; Knöchel W
    Stem Cells Dev; 2012 May; 21(8):1225-38. PubMed ID: 21967637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two Homeobox Transcription Factors, Goosecoid and Ventx1.1, Oppositely Regulate Chordin Transcription in
    Kumar V; Umair Z; Lee U; Kim J
    Cells; 2023 Mar; 12(6):. PubMed ID: 36980215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bmp4 Synexpression Gene,
    Rehman ZU; Tayyaba F; Lee U; Kim J
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cdx1 and Gsc distinctly regulate the transcription of BMP4 target gene ventx3.2 by directly binding to the proximal promoter region in Xenopus gastrulae.
    Goutam RS; Kumar V; Lee U; Kim J
    Mol Cells; 2024 Apr; 47(4):100058. PubMed ID: 38522664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ventx1.1 competes with a transcriptional activator Xcad2 to regulate negatively its own expression.
    Kumar S; Umair Z; Kumar V; Lee U; Choi SC; Kim J
    BMB Rep; 2019 Jun; 52(6):403-408. PubMed ID: 31068250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ventx1.1 as a Direct Repressor of Early Neural Gene
    Umair Z; Kumar S; Kim DH; Rafiq K; Kumar V; Kim S; Park JB; Lee JY; Lee U; Kim J
    Mol Cells; 2018 Dec; 41(12):1061-1071. PubMed ID: 30590909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ventx Family and Its Functional Similarities with Nanog: Involvement in Embryonic Development and Cancer Progression.
    Kumar S; Kumar V; Li W; Kim J
    Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Msx1 and Msx2 have shared essential functions in neural crest but may be dispensable in epidermis and axis formation in Xenopus.
    Khadka D; Luo T; Sargent TD
    Int J Dev Biol; 2006; 50(5):499-502. PubMed ID: 16586351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The homeodomain transcription factor Ventx2 regulates respiratory progenitor cell number and differentiation timing during Xenopus lung development.
    Rankin SA; Zorn AM
    Dev Growth Differ; 2022 Sep; 64(7):347-361. PubMed ID: 36053777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xbra and Smad-1 cooperate to activate the transcription of neural repressor ventx1.1 in Xenopus embryos.
    Kumar S; Umair Z; Yoon J; Lee U; Kim SC; Park JB; Lee JY; Kim J
    Sci Rep; 2018 Jul; 8(1):11391. PubMed ID: 30061699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lineage commitment of embryonic cells involves MEK1-dependent clearance of pluripotency regulator Ventx2.
    Scerbo P; Marchal L; Kodjabachian L
    Elife; 2017 Jun; 6():. PubMed ID: 28654420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foxd4l1.1 negatively regulates transcription of neural repressor ventx1.1 during neuroectoderm formation in Xenopus embryos.
    Kumar S; Umair Z; Kumar V; Kumar S; Lee U; Kim J
    Sci Rep; 2020 Oct; 10(1):16780. PubMed ID: 33033315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRAS GTPase is a novel stemness marker that impacts mouse embryonic stem cell plasticity and Xenopus embryonic cell fate.
    Mathieu ME; Faucheux C; Saucourt C; Soulet F; Gauthereau X; Fédou S; Trouillas M; Thézé N; Thiébaud P; Boeuf H
    Development; 2013 Aug; 140(16):3311-22. PubMed ID: 23863483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates.
    Snir M; Ofir R; Elias S; Frank D
    EMBO J; 2006 Aug; 25(15):3664-74. PubMed ID: 16858397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development.
    Gutkovich YE; Ofir R; Elkouby YM; Dibner C; Gefen A; Elias S; Frank D
    Dev Biol; 2010 Feb; 338(1):50-62. PubMed ID: 19944089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis.
    Baltzinger M; Ori M; Pasqualetti M; Nardi I; Rijli FM
    Dev Dyn; 2005 Dec; 234(4):858-67. PubMed ID: 16222714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mNanog possesses dorsal mesoderm-inducing ability by modulating both BMP and Activin/nodal signaling in Xenopus ectodermal cells.
    Miyazaki A; Ishii K; Yamashita S; Nejigane S; Matsukawa S; Ito Y; Onuma Y; Asashima M; Michiue T
    PLoS One; 2012; 7(10):e46630. PubMed ID: 23071603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of molecular markers to assess cardiac cushions formation in Xenopus.
    Lee YH; Saint-Jeannet JP
    Dev Dyn; 2009 Dec; 238(12):3257-65. PubMed ID: 19890915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of ground-state pluripotency by allelic regulation of Nanog.
    Miyanari Y; Torres-Padilla ME
    Nature; 2012 Feb; 483(7390):470-3. PubMed ID: 22327294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.