BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22606669)

  • 1. IMPST: A New Interactive Self-Training Approach to Segmentation Suspicious Lesions in Breast MRI.
    Azmi R; Norozi N; Anbiaee R; Salehi L; Amirzadi A
    J Med Signals Sens; 2011 May; 1(2):138-48. PubMed ID: 22606669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble Semi-supervised Frame-work for Brain Magnetic Resonance Imaging Tissue Segmentation.
    Azmi R; Pishgoo B; Norozi N; Yeganeh S
    J Med Signals Sens; 2013 Apr; 3(2):94-106. PubMed ID: 24098863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Semi-Supervised Method for Tumor Segmentation in Mammogram Images.
    Azary H; Abdoos M
    J Med Signals Sens; 2020; 10(1):12-18. PubMed ID: 32166073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A self-supervised strategy for fully automatic segmentation of renal dynamic contrast-enhanced magnetic resonance images.
    Huang W; Li H; Wang R; Zhang X; Wang X; Zhang J
    Med Phys; 2019 Oct; 46(10):4417-4430. PubMed ID: 31306492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
    Xiao Z; Su Y; Deng Z; Zhang W
    Comput Methods Programs Biomed; 2022 Nov; 226():107099. PubMed ID: 36116398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Semi-supervised Fuzzy Clustering Based on Knowledge Weighting and Cluster Center Learning to Mammary Molybdenum Target Image Segmentation.
    Peng P; Wu D; Huang LJ; Wang J; Zhang L; Wu Y; Jiang Y; Lu Z; Lai KW; Xia K
    Interdiscip Sci; 2024 Mar; 16(1):39-57. PubMed ID: 37486420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MDT: semi-supervised medical image segmentation with mixup-decoupling training.
    Long J; Ren Y; Yang C; Ren P; Zeng Z
    Phys Med Biol; 2024 Mar; 69(6):. PubMed ID: 38324897
    [No Abstract]   [Full Text] [Related]  

  • 9. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
    Enguehard J; O'Halloran P; Gholipour A
    IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MTANS: Multi-Scale Mean Teacher Combined Adversarial Network with Shape-Aware Embedding for Semi-Supervised Brain Lesion Segmentation.
    Chen G; Ru J; Zhou Y; Rekik I; Pan Z; Liu X; Lin Y; Lu B; Shi J
    Neuroimage; 2021 Dec; 244():118568. PubMed ID: 34508895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of MR image segmentation techniques using pattern recognition.
    Bezdek JC; Hall LO; Clarke LP
    Med Phys; 1993; 20(4):1033-48. PubMed ID: 8413011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-Supervised Semantic Segmentation With High- and Low-Level Consistency.
    Mittal S; Tatarchenko M; Brox T
    IEEE Trans Pattern Anal Mach Intell; 2021 Apr; 43(4):1369-1379. PubMed ID: 31869780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-TMS: an efficient regularization-oriented triple-teacher semi-supervised medical image segmentation model.
    Chen W; Zhou S; Liu X; Chen Y
    Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37699409
    [No Abstract]   [Full Text] [Related]  

  • 14. Self-supervised-RCNN for medical image segmentation with limited data annotation.
    Felfeliyan B; Forkert ND; Hareendranathan A; Cornel D; Zhou Y; Kuntze G; Jaremko JL; Ronsky JL
    Comput Med Imaging Graph; 2023 Oct; 109():102297. PubMed ID: 37729826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertainty-guided cross learning via CNN and transformer for semi-supervised honeycomb lung lesion segmentation.
    Zi-An Z; Xiu-Fang F; Xiao-Qiang R; Yun-Yun D
    Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37988756
    [No Abstract]   [Full Text] [Related]  

  • 16. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images.
    Rachmadi MF; Valdés-Hernández MDC; Li H; Guerrero R; Meijboom R; Wiseman S; Waldman A; Zhang J; Rueckert D; Wardlaw J; Komura T
    Comput Med Imaging Graph; 2020 Jan; 79():101685. PubMed ID: 31846826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and robust segmentation of white blood cell images by self-supervised learning.
    Zheng X; Wang Y; Wang G; Liu J
    Micron; 2018 Apr; 107():55-71. PubMed ID: 29425969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated segmentation of lesions and organs at risk on [
    Yazdani E; Karamzadeh-Ziarati N; Cheshmi SS; Sadeghi M; Geramifar P; Vosoughi H; Jahromi MK; Kheradpisheh SR
    Cancer Imaging; 2024 Feb; 24(1):30. PubMed ID: 38424612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boundary-aware information maximization for self-supervised medical image segmentation.
    Peng J; Wang P; Pedersoli M; Desrosiers C
    Med Image Anal; 2024 May; 94():103150. PubMed ID: 38574545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-Around Real Label Supervision: Cyclic Prototype Consistency Learning for Semi-Supervised Medical Image Segmentation.
    Xu Z; Wang Y; Lu D; Yu L; Yan J; Luo J; Ma K; Zheng Y; Tong RK
    IEEE J Biomed Health Inform; 2022 Jul; 26(7):3174-3184. PubMed ID: 35324450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.