BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22606941)

  • 1. Whole-bone scaling of the avian pelvic limb.
    Doube M; Yen SC; Kłosowski MM; Farke AA; Hutchinson JR; Shefelbine SJ
    J Anat; 2012 Jul; 221(1):21-9. PubMed ID: 22606941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femoral strength and posture in terrestrial birds and non-avian theropods.
    Farke AA; Alicea J
    Anat Rec (Hoboken); 2009 Sep; 292(9):1406-11. PubMed ID: 19711474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of cross-sectional geometry, curvature, and limb posture in maintaining equal safety factors: a computed tomography study.
    Brassey CA; Kitchener AC; Withers PJ; Manning PL; Sellers WI
    Anat Rec (Hoboken); 2013 Mar; 296(3):395-413. PubMed ID: 23382038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex-related differences of morphometric, densitometric, and geometric parameters of tibia and tarsometatarsal bone in 14-month-old ostriches (Struthio camelus).
    Charuta A; Dzierzecka M; Pierzchala M; Cooper RG; Polawska E; Horbanczuk JO
    Poult Sci; 2013 Nov; 92(11):2965-76. PubMed ID: 24135601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trabecular bone scales allometrically in mammals and birds.
    Doube M; Klosowski MM; Wiktorowicz-Conroy AM; Hutchinson JR; Shefelbine SJ
    Proc Biol Sci; 2011 Oct; 278(1721):3067-73. PubMed ID: 21389033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hind limb scaling in birds and other theropods: Implications for terrestrial locomotion.
    Gatesy SM
    J Morphol; 1991 Jul; 209(1):83-96. PubMed ID: 29865536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ontogenetic changes of geometrical and mechanical characteristics of the avian femur: a comparison between precocial and altricial birds.
    Wei X; Zhang Z
    J Anat; 2019 Nov; 235(5):903-911. PubMed ID: 31355453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling of avian bipedal locomotion reveals independent effects of body mass and leg posture on gait.
    Daley MA; Birn-Jeffery A
    J Exp Biol; 2018 May; 221(Pt 10):. PubMed ID: 29789347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogenetic scaling of locomotor kinetics and kinematics of the ostrich (Struthio camelus).
    Smith NC; Jespers KJ; Wilson AM
    J Exp Biol; 2010 Apr; 213(Pt 8):1347-55. PubMed ID: 20348347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatomy of the Tarsometatarsal Region and Digits in the Ostrich (
    Goodarzi N; Tehrani PR; Ghaderi S; Karimi F
    J Avian Med Surg; 2020 Jul; 34(2):142-151. PubMed ID: 32702953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological, densitometric and mechanical properties of pelvic limb bones in 14-month-old female ostriches (Struthio camelus).
    Tatara MR; Krupski W; Charuta A; Brodzki A; Jóźwik A; Strzałkowska N; Poławska E; Chmielowiec K; Horbańczuk JO
    Poult Sci; 2016 Oct; 95(10):2421-6. PubMed ID: 27333973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical significance of cross-sectional geometry of avian long bones.
    Cubo J; Casinos A
    Eur J Morphol; 1998 Feb; 36(1):19-28. PubMed ID: 9526136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural biomechanics of the foot bones.
    Hirsch BE
    J Am Podiatr Med Assoc; 1991 Jul; 81(7):338-43. PubMed ID: 1941577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modelling of locomotor muscle moment arms in the basal dinosaur Lesothosaurus diagnosticus: assessing convergence between birds and basal ornithischians.
    Bates KT; Maidment SC; Allen V; Barrett PM
    J Anat; 2012 Mar; 220(3):212-32. PubMed ID: 22211275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ontogenetic scaling patterns and functional anatomy of the pelvic limb musculature in emus (Dromaius novaehollandiae).
    Lamas LP; Main RP; Hutchinson JR
    PeerJ; 2014; 2():e716. PubMed ID: 25551028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macro-anatomical and morphometric studies of the hindlimb of grasscutter (Thryonomys swinderianus, Temminck-1827).
    Onwuama KT; Ojo SA; Hambolu JO; Dzenda T; Zakari FO; Salami SO
    Anat Histol Embryol; 2018 Feb; 47(1):21-27. PubMed ID: 29139158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphometric studies on the appendicular bony skeleton of the ostriches (Struthio Camelus).
    Kassem MAM; Tahon RR; Khalil KM; El-Ayat MA
    BMC Vet Res; 2023 Aug; 19(1):109. PubMed ID: 37542302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal indicators of locomotor adaptations in living and extinct rodents.
    Samuels JX; Van Valkenburgh B
    J Morphol; 2008 Nov; 269(11):1387-411. PubMed ID: 18777567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rat bone properties and their relationship to gait during growth.
    Song H; Polk JD; Kersh ME
    J Exp Biol; 2019 Sep; 222(Pt 18):. PubMed ID: 31492819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Big birds and their brains: paleoneurology of the New Zealand moa.
    Ashwell KW; Scofield RP
    Brain Behav Evol; 2008; 71(2):151-66. PubMed ID: 18032890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.