These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2260709)

  • 1. Intracellular calcium and high-energy phosphates in isolated cardiac myocytes.
    Doeller JE; Wittenberg BA
    Am J Physiol; 1990 Dec; 259(6 Pt 2):H1851-9. PubMed ID: 2260709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myoglobin function and energy metabolism of isolated cardiac myocytes: effect of sodium nitrite.
    Doeller JE; Wittenberg BA
    Am J Physiol; 1991 Jul; 261(1 Pt 2):H53-62. PubMed ID: 1858930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of calcium on mitochondrial NAD(P)H in paced rat ventricular myocytes.
    White RL; Wittenberg BA
    Biophys J; 1995 Dec; 69(6):2790-9. PubMed ID: 8599685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular Ca2+ transients in isolated perfused rat heart: measurement using the fluorescent indicator Fura-2/AM.
    Field ML; Azzawi A; Styles P; Henderson C; Seymour AM; Radda GK
    Cell Calcium; 1994 Aug; 16(2):87-100. PubMed ID: 7982268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADH measurements in adult rat myocytes during simulated ischemia.
    Esumi K; Nishida M; Shaw D; Smith TW; Marsh JD
    Am J Physiol; 1991 Jun; 260(6 Pt 2):H1743-52. PubMed ID: 2058713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory control in heart muscle during fatty acid oxidation. Energy state or substrate-level regulation by Ca2+?
    Vuorinen KH; Ala-Rämi A; Yan Y; Ingman P; Hassinen IE
    J Mol Cell Cardiol; 1995 Aug; 27(8):1581-91. PubMed ID: 8523421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular ATP activates coordinated Na+, Pi, and Ca2+ transport in cardiac myocytes.
    De Young MB; Scarpa A
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1182-90. PubMed ID: 2058652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular [Ca2+] staircase in the isovolumic pressure--frequency relationship of Langendorff-perfused rat heart.
    Field ML; Azzawi A; Unitt JF; Seymour AM; Henderson C; Radda GK
    J Mol Cell Cardiol; 1996 Jan; 28(1):65-77. PubMed ID: 8745215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular distribution of phosphagens in isolated perfused rat heart.
    Kauppinen RA; Hiltunen JK; Hassinen IE
    FEBS Lett; 1980 Apr; 112(2):273-6. PubMed ID: 7371865
    [No Abstract]   [Full Text] [Related]  

  • 11. NADH fluorescence of isolated ventricular myocytes: effects of pacing, myoglobin, and oxygen supply.
    White RL; Wittenberg BA
    Biophys J; 1993 Jul; 65(1):196-204. PubMed ID: 8369428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts.
    Wan B; Doumen C; Duszynski J; Salama G; Vary TC; LaNoue KF
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H453-60. PubMed ID: 8368348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyruvate modulates cardiac sarcoplasmic reticulum Ca2+ release in rats via mitochondria-dependent and -independent mechanisms.
    Zima AV; Kockskämper J; Mejia-Alvarez R; Blatter LA
    J Physiol; 2003 Aug; 550(Pt 3):765-83. PubMed ID: 12824454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of ischemic contracture in ferret hearts: relative roles of [Ca2+]i elevation and ATP depletion.
    Koretsune Y; Marban E
    Am J Physiol; 1990 Jan; 258(1 Pt 2):H9-16. PubMed ID: 2301617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simulation study on the constancy of cardiac energy metabolites during workload transition.
    Saito R; Takeuchi A; Himeno Y; Inagaki N; Matsuoka S
    J Physiol; 2016 Dec; 594(23):6929-6945. PubMed ID: 27530892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myoglobin-dependent oxidative metabolism in the hypoxic rat heart.
    Taylor DJ; Matthews PM; Radda GK
    Respir Physiol; 1986 Mar; 63(3):275-83. PubMed ID: 3961299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Relation between the energy state and permeability of cardiomyocyte sarcolemma during "calcium paradox" and activity of glycolysis].
    Alabovskiĭ VV; Vinokurov AA
    Vopr Med Khim; 1997; 43(1):29-33. PubMed ID: 9281222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.
    Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC
    J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of inorganic phosphate on ion exchange, energy state, and contraction in mammalian heart.
    Ponce-Hornos JE; Langer GA
    Am J Physiol; 1982 Jan; 242(1):H79-88. PubMed ID: 7058916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphocreatine restores high-energy phosphates in ischemic myocardium: implication for off-pump cardiac revascularization.
    Prabhakar G; Vona-Davis L; Murray D; Lakhani P; Murray G
    J Am Coll Surg; 2003 Nov; 197(5):786-91. PubMed ID: 14585415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.