These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 22607265)

  • 21. Microbial transformations of selenite by methane-oxidizing bacteria.
    Eswayah AS; Smith TJ; Scheinost AC; Hondow N; Gardiner PHE
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6713-6724. PubMed ID: 28646447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Dynamic Differences of Uptake and Translocation of Exogenous Selenium by Different Crops and Its Mechanism].
    Peng Q; Li Z; Liang DL; Wang MK; Guo L
    Huan Jing Ke Xue; 2017 Apr; 38(4):1667-1674. PubMed ID: 29965172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Persistent Bacterial and Fungal Community Shifts Exhibited in Selenium-Contaminated Reclaimed Mine Soils.
    Rosenfeld CE; James BR; Santelli CM
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methyl Selenol as a Precursor in Selenite Reduction to Se/S Species by Methane-Oxidizing Bacteria.
    Eswayah AS; Hondow N; Scheinost AC; Merroun M; Romero-González M; Smith TJ; Gardiner PHE
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31519658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of bioavailability of selenium in different plant-soil systems by diffusive gradients in thin-films (DGT).
    Peng Q; Wang M; Cui Z; Huang J; Chen C; Guo L; Liang D
    Environ Pollut; 2017 Jun; 225():637-643. PubMed ID: 28341328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selenium concentrations of common weeds and agricultural crops grown in the seleniferous soils of northwestern India.
    Dhillon KS; Dhillon SK
    Sci Total Environ; 2009 Dec; 407(24):6150-6. PubMed ID: 19800657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial transformation of Se oxyanions in cultures of Delftia lacustris grown under aerobic conditions.
    Wadgaonkar SL; Nancharaiah YV; Jacob C; Esposito G; Lens PNL
    J Microbiol; 2019 May; 57(5):362-371. PubMed ID: 30900147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions.
    Lampis S; Zonaro E; Bertolini C; Bernardi P; Butler CS; Vallini G
    Microb Cell Fact; 2014 Mar; 13(1):35. PubMed ID: 24606965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterisation.
    Tugarova AV; Mamchenkova PV; Khanadeev VA; Kamnev AA
    N Biotechnol; 2020 Sep; 58():17-24. PubMed ID: 32184193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bio-reduction of selenite to elemental red selenium by Tetrathiobacter kashmirensis.
    Hunter WJ; Manter DK
    Curr Microbiol; 2008 Jul; 57(1):83-8. PubMed ID: 18389307
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selenium Nanoparticles as an Innovative Selenium Fertilizer Exert Less Disturbance to Soil Microorganisms.
    Liu J; Qi WY; Chen H; Song C; Li Q; Wang SG
    Front Microbiol; 2021; 12():746046. PubMed ID: 34589080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selenium speciation in soil and rice: influence of water management and Se fertilization.
    Li HF; Lombi E; Stroud JL; McGrath SP; Zhao FJ
    J Agric Food Chem; 2010 Nov; 58(22):11837-43. PubMed ID: 20964343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unveiling the vital role of soil microorganisms in selenium cycling: a review.
    Jiang Z; Wang Z; Zhao Y; Peng M
    Front Microbiol; 2024; 15():1448539. PubMed ID: 39323878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Screening and identification of a photosynthetic bacterium reducing selenite to red elemental selenium].
    Wang DL; Xiao M; Qian W; Han B
    Wei Sheng Wu Xue Bao; 2007 Feb; 47(1):44-7. PubMed ID: 17436622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Differences of selenium uptake pattern of pakchoi and the possible mechanism when amended with selenate and selenite].
    Guo L; Man N; Liang DL; Xie JY; Liu JJ
    Huan Jing Ke Xue; 2013 Aug; 34(8):3272-9. PubMed ID: 24191579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB.
    Fernández-Llamosas H; Castro L; Blázquez ML; Díaz E; Carmona M
    Microb Cell Fact; 2016 Jun; 15(1):109. PubMed ID: 27301452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of selenium nanoparticles in Pseudomonas putida KT2440.
    Avendaño R; Chaves N; Fuentes P; Sánchez E; Jiménez JI; Chavarría M
    Sci Rep; 2016 Nov; 6():37155. PubMed ID: 27845437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two new selenite reducing bacterial isolates from paddy soil and the potential Se biofortification of paddy rice.
    Huang C; Wang H; Shi X; Wang Y; Li P; Yin H; Shao Y
    Ecotoxicology; 2021 Sep; 30(7):1465-1475. PubMed ID: 32880083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fate of Selenium in Soils at a Seleniferous Site Recorded by High Precision Se Isotope Measurements.
    Schilling K; Johnson TM; Dhillon KS; Mason PR
    Environ Sci Technol; 2015 Aug; 49(16):9690-8. PubMed ID: 26177307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of temperature, CO2 fixation and nitrate reduction on selenium reduction, by a paddy soil Clostridium strain.
    Bao P; Huang H; Hu ZY; Häggblom MM; Zhu YG
    J Appl Microbiol; 2013 Mar; 114(3):703-12. PubMed ID: 23181481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.