BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 22607371)

  • 1. Na+, Ca2+, and Mg2+ in brines affect supercritical CO2-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2013 Jan; 47(1):191-7. PubMed ID: 22607371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotite dissolution in brine at varied temperatures and CO2 pressures: its activation energy and potential CO2 intercalation.
    Hu Y; Jun YS
    Langmuir; 2012 Oct; 28(41):14633-41. PubMed ID: 22989382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotite-brine interactions under acidic hydrothermal conditions: fibrous illite, goethite, and kaolinite formation and biotite surface cracking.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2011 Jul; 45(14):6175-80. PubMed ID: 21696218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinctive Reactivities at Biotite Edge and Basal Planes in the Presence of Organic Ligands: Implications for Organic-Rich Geologic CO2 Sequestration.
    Zhang L; Jun YS
    Environ Sci Technol; 2015 Aug; 49(16):10217-25. PubMed ID: 26171995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolution and precipitation of clay minerals under geologic CO2 sequestration conditions: CO2-brine-phlogopite interactions.
    Shao H; Ray JR; Jun YS
    Environ Sci Technol; 2010 Aug; 44(15):5999-6005. PubMed ID: 20586472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Na
    Min Y; Kim D; Jun YS
    Environ Sci Technol; 2018 Nov; 52(22):13638-13646. PubMed ID: 30346737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wettability phenomena at the CO2-brine-mineral interface: implications for geologic carbon sequestration.
    Wang S; Edwards IM; Clarens AF
    Environ Sci Technol; 2013 Jan; 47(1):234-41. PubMed ID: 22857395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of Phosphonate-Based Scale Inhibitor on Brine-Biotite Interactions under Subsurface Conditions.
    Zhang L; Kim D; Jun YS
    Environ Sci Technol; 2018 May; 52(10):6042-6049. PubMed ID: 29668264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of salinity and the extent of water on supercritical CO2-induced phlogopite dissolution and secondary mineral formation.
    Shao H; Ray JR; Jun YS
    Environ Sci Technol; 2011 Feb; 45(4):1737-43. PubMed ID: 21222477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-dependent interactions between alkali feldspars and organic compounds: implications for reactions in geologic carbon sequestration.
    Yang Y; Min Y; Jun YS
    Environ Sci Technol; 2013 Jan; 47(1):150-8. PubMed ID: 22978468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of phosphate on biotite dissolution and secondary precipitation under conditions relevant to engineered subsurface processes.
    Zhang L; Kim D; Kim Y; Wan J; Jun YS
    Phys Chem Chem Phys; 2017 Nov; 19(44):29895-29904. PubMed ID: 29086792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residual CO2 trapping in Indiana limestone.
    El-Maghraby RM; Blunt MJ
    Environ Sci Technol; 2013 Jan; 47(1):227-33. PubMed ID: 23167314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plagioclase dissolution during CO₂-SO₂ cosequestration: effects of sulfate.
    Min Y; Kubicki JD; Jun YS
    Environ Sci Technol; 2015 Feb; 49(3):1946-54. PubMed ID: 25549263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forsterite dissolution in saline water at elevated temperature and high CO2 pressure.
    Wang F; Giammar DE
    Environ Sci Technol; 2013 Jan; 47(1):168-73. PubMed ID: 22650147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The liquidlike ordering of lipid A-diphosphate colloidal crystals: the influence of Ca2+, Mg2+, Na+, and K+ on the ordering of colloidal suspensions of lipid A-diphosphate in aqueous solutions.
    Faunce CA; Reichelt H; Paradies HH; Quitschau P; Zimmermann K
    J Chem Phys; 2005 Jun; 122(21):214727. PubMed ID: 15974782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of a red iron oxide/montmorillonite pigment in a CO2-rich brine solution.
    Montes-Hernandez G; Pironon J; Villieras F
    J Colloid Interface Sci; 2006 Nov; 303(2):472-6. PubMed ID: 16928379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles.
    Tenney CM; Cygan RT
    Environ Sci Technol; 2014; 48(3):2035-42. PubMed ID: 24410258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of Mount Simon sandstone and the Eau Claire shale under CO2 storage conditions.
    Carroll SA; McNab WW; Dai Z; Torres SC
    Environ Sci Technol; 2013 Jan; 47(1):252-61. PubMed ID: 22873684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the potential of phyllosilicate minerals as potassium fertilizers using sodium tetraphenylboron and intensive cropping with perennial ryegrass.
    Li T; Wang H; Wang J; Zhou Z; Zhou J
    Sci Rep; 2015 Mar; 5():9249. PubMed ID: 25782771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale studies in micromodels.
    Kim Y; Wan J; Kneafsey TJ; Tokunaga TK
    Environ Sci Technol; 2012 Apr; 46(7):4228-35. PubMed ID: 22404561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.