BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 22607372)

  • 1. Solvothermal synthesis of zincblende and wurtzite CuInS2 nanocrystals and their photovoltaic application.
    Huang WC; Tseng CH; Chang SH; Tuan HY; Chiang CC; Lyu LM; Huang MH
    Langmuir; 2012 Jun; 28(22):8496-501. PubMed ID: 22607372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase.
    Tang A; Hu Z; Yin Z; Ye H; Yang C; Teng F
    Dalton Trans; 2015 May; 44(19):9251-9. PubMed ID: 25910188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wurtzite CuInS₂ and CuInxGa₁-xS₂ nanoribbons: synthesis, optical and photoelectrical properties.
    Li Q; Zhai L; Zou C; Huang X; Zhang L; Yang Y; Chen X; Huang S
    Nanoscale; 2013 Feb; 5(4):1638-48. PubMed ID: 23334175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.
    Crisp RW; Panthani MG; Rance WL; Duenow JN; Parilla PA; Callahan R; Dabney MS; Berry JJ; Talapin DV; Luther JM
    ACS Nano; 2014 Sep; 8(9):9063-72. PubMed ID: 25133302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution fabrication and photoelectrical properties of CuInS₂ nanocrystals on TiO₂ nanorod array.
    Zhou ZJ; Fan JQ; Wang X; Sun WZ; Zhou WH; Du ZL; Wu SX
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2189-94. PubMed ID: 21688822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alloyed (ZnS)(x)(Cu2SnS3)(1-x) and (CuInS2)(x)(Cu2SnS3)(1-x) nanocrystals with arbitrary composition and broad tunable band gaps.
    Liu Q; Zhao Z; Lin Y; Guo P; Li S; Pan D; Ji X
    Chem Commun (Camb); 2011 Jan; 47(3):964-6. PubMed ID: 21079830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism.
    Yu JH; Joo J; Park HM; Baik SI; Kim YW; Kim SC; Hyeon T
    J Am Chem Soc; 2005 Apr; 127(15):5662-70. PubMed ID: 15826206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures.
    Banerjee IA; Yu L; Matsui H
    J Am Chem Soc; 2005 Nov; 127(46):16002-3. PubMed ID: 16287268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy.
    Du W; Qian X; Yin J; Gong Q
    Chemistry; 2007; 13(31):8840-6. PubMed ID: 17654756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of wurtzite-zincblende Cu2ZnSnS4 and Cu2ZnSnSe4 nanocrystals: insight into the structural selection of quaternary and ternary compounds influenced by binary nuclei.
    Li Y; Han Q; Kim TW; Shi W
    Nanoscale; 2014 Apr; 6(7):3777-85. PubMed ID: 24573321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and shape control of CuInS(2) nanoparticles.
    Kruszynska M; Borchert H; Parisi J; Kolny-Olesiak J
    J Am Chem Soc; 2010 Nov; 132(45):15976-86. PubMed ID: 20958030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of nanocrystal ink based superstrate-type CuInS₂ thin film solar cells.
    Cho JW; Park SJ; Kim W; Min BK
    Nanotechnology; 2012 Jul; 23(26):265401. PubMed ID: 22699212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-controlled synthesis of Cu2ZnSnS4 nanocrystals: the role of reactivity between Zn and S.
    Zou Y; Su X; Jiang J
    J Am Chem Soc; 2013 Dec; 135(49):18377-84. PubMed ID: 24283701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals.
    Stolle CJ; Panthani MG; Harvey TB; Akhavan VA; Korgel BA
    ACS Appl Mater Interfaces; 2012 May; 4(5):2757-61. PubMed ID: 22524385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal synthesis of wurtzite Cu₂CoSnS₄ nanocrystals and the photoresponse of spray-deposited thin films.
    Zhang X; Bao N; Lin B; Gupta A
    Nanotechnology; 2013 Mar; 24(10):105706. PubMed ID: 23426082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation pathway of CuInSe2 nanocrystals for solar cells.
    Kar M; Agrawal R; Hillhouse HW
    J Am Chem Soc; 2011 Nov; 133(43):17239-47. PubMed ID: 21879767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition.
    Pan D; An L; Sun Z; Hou W; Yang Y; Yang Z; Lu Y
    J Am Chem Soc; 2008 Apr; 130(17):5620-1. PubMed ID: 18396869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties.
    Zhong H; Lo SS; Mirkovic T; Li Y; Ding Y; Li Y; Scholes GD
    ACS Nano; 2010 Sep; 4(9):5253-62. PubMed ID: 20815394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ray-trace simulation of CuInS(Se)₂ quantum dot based luminescent solar concentrators.
    Hu X; Kang R; Zhang Y; Deng L; Zhong H; Zou B; Shi LJ
    Opt Express; 2015 Jul; 23(15):A858-67. PubMed ID: 26367686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of nonstoichiometric CuInS₂ as a light-harvesting photoanode and catalytic photocathode in a sensitized solar cell.
    Chang JY; Chang SC; Tzing SH; Li CH
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22272-81. PubMed ID: 25420094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.