BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22607464)

  • 41. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model.
    Nordlund E; Aura AM; Mattila I; Kössö T; Rouau X; Poutanen K
    J Agric Food Chem; 2012 Aug; 60(33):8134-45. PubMed ID: 22731123
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sinapate dehydrodimers and sinapate-ferulate heterodimers in cereal dietary fiber.
    Bunzel M; Ralph J; Kim H; Lu F; Ralph SA; Marita JM; Hatfield RD; Steinhart H
    J Agric Food Chem; 2003 Feb; 51(5):1427-34. PubMed ID: 12590493
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural differences among alkali-soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) brans influence human fecal fermentation profiles.
    Rose DJ; Patterson JA; Hamaker BR
    J Agric Food Chem; 2010 Jan; 58(1):493-9. PubMed ID: 20000566
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Soluble, insoluble, and total dietary fiber in cereals, products derived from their processing and cereal-based commercial products].
    Sangronis E; Rebolledo MA
    Arch Latinoam Nutr; 1993 Sep; 43(3):258-63. PubMed ID: 8779630
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Starch digestion kinetics of extruded reformed rice is changed in different ways with added protein or fiber.
    Na-Nakorn K; Kulrattanarak T; Hamaker BR; Tongta S
    Food Funct; 2019 Aug; 10(8):4577-4583. PubMed ID: 31328214
    [TBL] [Abstract][Full Text] [Related]  

  • 46. APPLICATION OF OAT, WHEAT AND RYE BRAN TO MODIFY NUTRITIONAL PROPERTIES, PHYSICAL AND SENSORY CHARACTERISTICS OF EXTRUDED CORN SNACKS.
    Makowska A; Polcyn A; Chudy S; Michniewicz J
    Acta Sci Pol Technol Aliment; 2015; 14(4):375-386. PubMed ID: 28068043
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Formation of ethyl ferulate from feruloylated oligosaccharide by transesterification of rice koji enzyme under sake mash conditions.
    Suzuki N; Ito T; Hiroshima K; Tokiwano T; Hashizume K
    J Biosci Bioeng; 2016 Mar; 121(3):281-5. PubMed ID: 26190354
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural analysis of novel bioactive acylated steryl glucosides in pre-germinated brown rice bran.
    Usuki S; Ariga T; Dasgupta S; Kasama T; Morikawa K; Nonaka S; Okuhara Y; Kise M; Yu RK
    J Lipid Res; 2008 Oct; 49(10):2188-96. PubMed ID: 18587070
    [TBL] [Abstract][Full Text] [Related]  

  • 49. γ-Oryzanols of North American Wild Rice (
    Aladedunye F; Przybylski R; Rudzinska M; Klensporf-Pawlik D
    J Am Oil Chem Soc; 2013 Aug; 90(8):1101-1109. PubMed ID: 23913975
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains.
    Jaworski NW; Lærke HN; Bach Knudsen KE; Stein HH
    J Anim Sci; 2015 Mar; 93(3):1103-13. PubMed ID: 26020887
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of rice bran rancidity on the release of phenolics and antioxidative properties of rice bran dietary fiber in vitro gastrointestinal digestion products.
    Li H; Liu T; Li F; Wu X; Wu W
    Food Res Int; 2023 Nov; 173(Pt 2):113483. PubMed ID: 37803806
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The dopaminergic neuroprotective effects of different phytosterols identified in rice bran and rice bran oil.
    Zhang J; Zhang L; Wu Z; Zhang P; Liu R; Chang M; Wang X
    Food Funct; 2021 Nov; 12(21):10538-10549. PubMed ID: 34570129
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of the degree of cooking on starch digestibility of rice - An in vitro study.
    Tamura M; Singh J; Kaur L; Ogawa Y
    Food Chem; 2016 Jan; 191():98-104. PubMed ID: 26258707
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Moderate ferulate and diferulate levels do not impede maize cell wall degradation by human intestinal microbiota.
    Funk C; Braune A; Grabber JH; Steinhart H; Bunzel M
    J Agric Food Chem; 2007 Mar; 55(6):2418-23. PubMed ID: 17319685
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enzymatic production of ferulic acid from defatted rice bran by using a combination of bacterial enzymes.
    Uraji M; Kimura M; Inoue Y; Kawakami K; Kumagai Y; Harazono K; Hatanaka T
    Appl Biochem Biotechnol; 2013 Nov; 171(5):1085-93. PubMed ID: 23512135
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of 4-O-5'-coupled diferulic acid from insoluble cereal fiber.
    Bunzel M; Ralph J; Marita J; Steinhart H
    J Agric Food Chem; 2000 Aug; 48(8):3166-9. PubMed ID: 10956086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Factors affecting levels of ferulic acid, ethyl ferulate and taste-active pyroglutamyl peptides in sake.
    Hashizume K; Ito T; Shirato K; Amano N; Tokiwano T; Ohno T; Shindo S; Watanabe S; Okuda M
    J Biosci Bioeng; 2020 Mar; 129(3):322-326. PubMed ID: 31672432
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Comparison of the Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Phenolic Compounds from Rice Bran and Its Dietary Fibres.
    Zhao G; Zhang R; Dong L; Huang F; Liu L; Deng Y; Ma Y; Zhang Y; Wei Z; Xiao J; Zhang M
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29346313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gastric emptying rate and chyme characteristics for cooked brown and white rice meals in vivo.
    Bornhorst GM; Chang LQ; Rutherfurd SM; Moughan PJ; Singh RP
    J Sci Food Agric; 2013 Sep; 93(12):2900-8. PubMed ID: 23553053
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biotransformation of corn bran derived ferulic acid to vanillic acid using engineered
    Upadhyay P; Singh NK; Tupe R; Odenath A; Lali A
    Prep Biochem Biotechnol; 2020; 50(4):341-348. PubMed ID: 31809239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.