These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 22607471)
1. Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings. Zhai L; Liu Z; Zou X; Jiang Y; Qiu F; Zheng Y; Zhang Z Physiol Plant; 2013 Feb; 147(2):181-93. PubMed ID: 22607471 [TBL] [Abstract][Full Text] [Related]
2. System analysis of microRNAs in the development and aluminium stress responses of the maize root system. Kong X; Zhang M; Xu X; Li X; Li C; Ding Z Plant Biotechnol J; 2014 Oct; 12(8):1108-21. PubMed ID: 24985700 [TBL] [Abstract][Full Text] [Related]
3. Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. Liu Z; Kumari S; Zhang L; Zheng Y; Ware D PLoS One; 2012; 7(6):e39786. PubMed ID: 22768123 [TBL] [Abstract][Full Text] [Related]
4. Submergence-responsive MicroRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Zhang Z; Wei L; Zou X; Tao Y; Liu Z; Zheng Y Ann Bot; 2008 Oct; 102(4):509-19. PubMed ID: 18669574 [TBL] [Abstract][Full Text] [Related]
5. Comparative proteomic analysis revealing the complex network associated with waterlogging stress in maize (Zea mays L.) seedling root cells. Yu F; Han X; Geng C; Zhao Y; Zhang Z; Qiu F Proteomics; 2015 Jan; 15(1):135-47. PubMed ID: 25316036 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide identification of microRNAs responding to early stages of phosphate deficiency in maize. Nie Z; Ren Z; Wang L; Su S; Wei X; Zhang X; Wu L; Liu D; Tang H; Liu H; Zhang S; Gao S Physiol Plant; 2016 Jun; 157(2):161-74. PubMed ID: 26572939 [TBL] [Abstract][Full Text] [Related]
7. Water-deficit responsive microRNAs in the primary root growth zone of maize. Seeve CM; Sunkar R; Zheng Y; Liu L; Liu Z; McMullen M; Nelson S; Sharp RE; Oliver MJ BMC Plant Biol; 2019 Oct; 19(1):447. PubMed ID: 31651253 [TBL] [Abstract][Full Text] [Related]
8. Combined small RNA and degradome sequencing reveals microRNA regulation during immature maize embryo dedifferentiation. Shen Y; Jiang Z; Lu S; Lin H; Gao S; Peng H; Yuan G; Liu L; Zhang Z; Zhao M; Rong T; Pan G Biochem Biophys Res Commun; 2013 Nov; 441(2):425-30. PubMed ID: 24183719 [TBL] [Abstract][Full Text] [Related]
9. Identification and characterization of microRNAs in the developing maize endosperm. Gu Y; Liu Y; Zhang J; Liu H; Hu Y; Du H; Li Y; Chen J; Wei B; Huang Y Genomics; 2013; 102(5-6):472-8. PubMed ID: 24021532 [TBL] [Abstract][Full Text] [Related]
10. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background. Sheng L; Chai W; Gong X; Zhou L; Cai R; Li X; Zhao Y; Jiang H; Cheng B Int J Biol Sci; 2015; 11(7):781-93. PubMed ID: 26078720 [TBL] [Abstract][Full Text] [Related]
11. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Luan M; Xu M; Lu Y; Zhang L; Fan Y; Wang L Gene; 2015 Jan; 555(2):178-85. PubMed ID: 25445264 [TBL] [Abstract][Full Text] [Related]
12. Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings. Trevisan S; Nonis A; Begheldo M; Manoli A; Palme K; Caporale G; Ruperti B; Quaggiotti S Plant Cell Environ; 2012 Jun; 35(6):1137-55. PubMed ID: 22211437 [TBL] [Abstract][Full Text] [Related]
13. Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress. Qing DJ; Lu HF; Li N; Dong HT; Dong DF; Li YZ Plant Cell Physiol; 2009 Apr; 50(4):889-903. PubMed ID: 19264788 [TBL] [Abstract][Full Text] [Related]
14. Transcript profiling of microRNAs during the early development of the maize brace root via Solexa sequencing. Liu P; Yan K; Lei YX; Xu R; Zhang YM; Yang GD; Huang JG; Wu CA; Zheng CC Genomics; 2013 Feb; 101(2):149-56. PubMed ID: 23147674 [TBL] [Abstract][Full Text] [Related]
15. Computational identification of maize miRNA and their gene targets involved in biotic and abiotic stresses. Kaur K; Duhan N; Singh J; Kaur G; Vikal Y J Biosci; 2020; 45():. PubMed ID: 33184248 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing. Sun Z; He Y; Li J; Wang X; Chen J Plant Cell Physiol; 2015 Apr; 56(4):688-99. PubMed ID: 25535197 [TBL] [Abstract][Full Text] [Related]
17. Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply. Yang Z; Wang Z; Yang C; Yang Z; Li H; Wu Y Genes Genomics; 2019 Oct; 41(10):1183-1194. PubMed ID: 31313105 [TBL] [Abstract][Full Text] [Related]
18. Characterization of cadmium-responsive MicroRNAs and their target genes in maize (Zea mays) roots. Gao J; Luo M; Peng H; Chen F; Li W BMC Mol Biol; 2019 May; 20(1):14. PubMed ID: 31046674 [TBL] [Abstract][Full Text] [Related]
19. Differential expression of miRNAs in response to salt stress in maize roots. Ding D; Zhang L; Wang H; Liu Z; Zhang Z; Zheng Y Ann Bot; 2009 Jan; 103(1):29-38. PubMed ID: 18952624 [TBL] [Abstract][Full Text] [Related]
20. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Hao DC; Yang L; Xiao PG; Liu M Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]