These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 22607758)

  • 21. Computational enzymology.
    Lonsdale R; Ranaghan KE; Mulholland AJ
    Chem Commun (Camb); 2010 Apr; 46(14):2354-72. PubMed ID: 20309456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling biotransformation reactions by combined quantum mechanical/molecular mechanical approaches: from structure to activity.
    Ridder L; Mulholland AJ
    Curr Top Med Chem; 2003; 3(11):1241-56. PubMed ID: 12769703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein dynamics and catalysis: the problems of transition state theory and the subtlety of dynamic control.
    Pineda JR; Schwartz SD
    Philos Trans R Soc Lond B Biol Sci; 2006 Aug; 361(1472):1433-8. PubMed ID: 16873129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational enzymatic catalysis--clarifying enzymatic mechanisms with the help of computers.
    Sousa SF; Fernandes PA; Ramos MJ
    Phys Chem Chem Phys; 2012 Sep; 14(36):12431-41. PubMed ID: 22870506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Role of Molecular Dynamics Potential of Mean Force Calculations in the Investigation of Enzyme Catalysis.
    Yang Y; Pan L; Lightstone FC; Merz KM
    Methods Enzymol; 2016; 577():1-29. PubMed ID: 27498632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Computational chemistry approaches in studies on industrial enzymes].
    Liu H
    Sheng Wu Gong Cheng Xue Bao; 2019 Oct; 35(10):1819-1828. PubMed ID: 31668031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzyme dynamics during catalysis measured by NMR spectroscopy.
    Kern D; Eisenmesser EZ; Wolf-Watz M
    Methods Enzymol; 2005; 394():507-24. PubMed ID: 15808235
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.
    Gao J; Major DT; Fan Y; Lin YL; Ma S; Wong KY
    Methods Mol Biol; 2008; 443():37-62. PubMed ID: 18446281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis.
    Min W; Xie XS; Bagchi B
    J Phys Chem B; 2008 Jan; 112(2):454-66. PubMed ID: 18085768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A stationary-wave model of enzyme catalysis.
    Canepa C
    J Comput Chem; 2010 Jan; 31(2):343-50. PubMed ID: 19479739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineered control of enzyme structural dynamics and function.
    Boehr DD; D'Amico RN; O'Rourke KF
    Protein Sci; 2018 Apr; 27(4):825-838. PubMed ID: 29380452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How enzymes work: analysis by modern rate theory and computer simulations.
    Garcia-Viloca M; Gao J; Karplus M; Truhlar DG
    Science; 2004 Jan; 303(5655):186-95. PubMed ID: 14716003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mixed quantum mechanical/molecular mechanical simulations of chemical reactions in solution and in enzymes by the classical trajectory mapping approach.
    Pan JJ; Hwang JK
    Pac Symp Biocomput; 1996; ():539-49. PubMed ID: 9390257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions.
    Wang W; Donini O; Reyes CM; Kollman PA
    Annu Rev Biophys Biomol Struct; 2001; 30():211-43. PubMed ID: 11340059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Harnessing Conformational Plasticity to Generate Designer Enzymes.
    Crean RM; Gardner JM; Kamerlin SCL
    J Am Chem Soc; 2020 Jul; 142(26):11324-11342. PubMed ID: 32496764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulating enzyme reactions: challenges and perspectives.
    Field MJ
    J Comput Chem; 2002 Jan; 23(1):48-58. PubMed ID: 11913389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymatic catalysis: the emerging role of conceptual density functional theory.
    Roos G; Geerlings P; Messens J
    J Phys Chem B; 2009 Oct; 113(41):13465-75. PubMed ID: 19754087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzyme millisecond conformational dynamics do not catalyze the chemical step.
    Pisliakov AV; Cao J; Kamerlin SC; Warshel A
    Proc Natl Acad Sci U S A; 2009 Oct; 106(41):17359-64. PubMed ID: 19805169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of protein dynamics during enzymatic C-H bond cleavage catalysis.
    Klinman JP
    Biochemistry; 2013 Mar; 52(12):2068-77. PubMed ID: 23373460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.