BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22608411)

  • 1. A simple and selective fluorometric assay for dopamine using a calcein blue-Fe2+ complex fluorophore.
    Seto D; Maki T; Soh N; Nakano K; Ishimatsu R; Imato T
    Talanta; 2012 May; 94():36-43. PubMed ID: 22608411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric and Fluorometric Assays for Dopamine with a Wide Concentration Range Based on Fe-MIL-88NH2 Metal-organic Framework.
    Zhao C; Liu Y; Li Y
    Anal Sci; 2015; 31(10):1035-9. PubMed ID: 26460368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Fluorometric determination of trace Shachongdan with calcein-Pd2+].
    Mou L; Lu Y; Zhang C
    Guang Pu Xue Yu Guang Pu Fen Xi; 1997 Apr; 17(2):41-4. PubMed ID: 15810386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of dopamine at the nanogram level based on the formation of Prussian blue nanoparticles by resonance Rayleigh scattering technique.
    Dong JX; Wen W; Li NB; Luo HQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():527-32. PubMed ID: 22137013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance liquid chromatography method for ferric iron chelators using a post-column reaction with Calcein Blue.
    Ariga T; Ito K; Imura Y; Yoshimura E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Mar; 985():48-53. PubMed ID: 25658515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A terpyridyl-imidazole (tpy-HImzPh3) based bifunctional receptor for multichannel detection of Fe2+ and F- ions.
    Bhaumik C; Das S; Maity D; Baitalik S
    Dalton Trans; 2011 Nov; 40(44):11795-808. PubMed ID: 21968741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced fluorescence of chitosan based on size change of micelles and application to directly selective detecting Fe³⁺ in human serum.
    Huang H; Liu F; Chen S; Zhao Q; Liao B; Long Y; Zeng Y; Xia X
    Biosens Bioelectron; 2013 Apr; 42():539-44. PubMed ID: 23261686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel square pyramidal iron(III) complexes of linear tetradentate bis(phenolate) ligands as structural and reactive models for intradiol-cleaving 3,4-PCD enzymes: Quinone formation vs. intradiol cleavage.
    Mayilmurugan R; Sankaralingam M; Suresh E; Palaniandavar M
    Dalton Trans; 2010 Oct; 39(40):9611-25. PubMed ID: 20835480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new fluorimetric method for the detection and quantification of siderophores using Calcein Blue, with potential as a bacterial detection tool.
    Sankaranarayanan R; Alagumaruthanayagam A; Sankaran K
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2339-49. PubMed ID: 25634020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step synthesis of fluorescein modified nano-carbon for Pd(II) detection via fluorescence quenching.
    Panchompoo J; Aldous L; Baker M; Wallace MI; Compton RG
    Analyst; 2012 May; 137(9):2054-62. PubMed ID: 22421892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Determination of iron(III) in Chinese herbal medicine and tea based on fluorescence quenching of 2,4-dichro-phenylfluorone].
    Dai G; Aodeng GW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jul; 24(7):848-50. PubMed ID: 15766088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Fluorescent Reagent Based on Ligand Exchange Reaction for the Highly Sensitive and Selective Detection of Dopamine in the Serum.
    Suzuki Y
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31547244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron(III) complexes of fluorescent hydroxamate ligands: preparation, properties, and cellular processing.
    Clarke AJ; Yamamoto N; Jensen P; Hambley TW
    Dalton Trans; 2009 Dec; (48):10787-98. PubMed ID: 20023908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective chemosensor for copper ions based on fluorescence quenching of a Schiff-base fluorophore.
    Espada-Bellido E; Galindo-Riaño MD; García-Vargas M; Narayanaswamy R
    Appl Spectrosc; 2010 Jul; 64(7):727-32. PubMed ID: 20615285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel iron(III) complexes of sterically hindered 4N ligands: regioselectivity in biomimetic extradiol cleavage of catechols.
    Mayilmurugan R; Stoeckli-Evans H; Palaniandavar M
    Inorg Chem; 2008 Aug; 47(15):6645-58. PubMed ID: 18597419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective ultratrace detection of Al(III) and Ga(III) complexed with a calcein isomer by capillary zone electrophoresis with laser-induced fluorescence detection. Comparison of emissive polyaminocarboxylates as derivatizing ligands.
    Saito S; Shimidzu J; Yoshimoto K; Maeda M; Aoyama M
    J Chromatogr A; 2007 Jan; 1140(1-2):230-5. PubMed ID: 17178417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoquinoline-based lanthanide complexes: bright NIR optical probes and efficient MRI agents.
    Caillé F; Bonnet CS; Buron F; Villette S; Helm L; Petoud S; Suzenet F; Tóth E
    Inorg Chem; 2012 Feb; 51(4):2522-32. PubMed ID: 22233349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of dopamine in pharmaceutical formulation using enhanced luminescence from europium complex.
    Wabaidur SM; Alothman ZA; Naushad M
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():331-4. PubMed ID: 22484841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultrasensitive and selective fluorescence assay for Sudan I and III against the influence of Sudan II and IV.
    Huang ST; Yang LF; Li NB; Luo HQ
    Biosens Bioelectron; 2013 Apr; 42():136-40. PubMed ID: 23202343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective fluorescence detection of histamine based on ligand exchange mechanism and its application to biomonitoring.
    Seto D; Soh N; Nakano K; Imato T
    Anal Biochem; 2010 Sep; 404(2):135-9. PubMed ID: 20450876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.