BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 22608451)

  • 1. Rhodamine 6G conjugated-quantum dots used for highly sensitive and selective ratiometric fluorescence sensor of glutathione.
    Gui R; An X; Su H; Shen W; Zhu L; Ma X; Chen Z; Wang X
    Talanta; 2012 May; 94():295-300. PubMed ID: 22608451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved method for ratiometric fluorescence detection of pH and Cd2+ using fluorescein isothiocyanate-quantum dots conjugates.
    Gui R; An X; Huang W
    Anal Chim Acta; 2013 Mar; 767():134-40. PubMed ID: 23452797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switch-on fluorescent strategy based on crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione in water and urine.
    Sheng Z; Chen L
    Anal Bioanal Chem; 2017 Oct; 409(26):6081-6090. PubMed ID: 28799001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A near-infrared-emitting CdTe/CdS core/shell quantum dots-based OFF-ON fluorescence sensor for highly selective and sensitive detection of Cd2+.
    Gui R; An X; Su H; Shen W; Chen Z; Wang X
    Talanta; 2012 May; 94():257-62. PubMed ID: 22608445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of DNA using an "off-on" switch of a regenerating biosensor based on an electron transfer mechanism from glutathione-capped CdTe quantum dots to nile blue.
    Shen Y; Liu S; Kong L; Tan X; He Y; Yang J
    Analyst; 2014 Nov; 139(22):5858-67. PubMed ID: 25221793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrothermal synthetic mercaptopropionic acid stabled CdTe quantum dots as fluorescent probes for detection of Ag⁺.
    Gan TT; Zhang YJ; Zhao NJ; Xiao X; Yin GF; Yu SH; Wang HB; Duan JB; Shi CY; Liu WQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 99():62-8. PubMed ID: 23041923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient ratiometric fluorescence sensor based on metal-organic frameworks and quantum dots for highly selective detection of 6-mercaptopurine.
    Jin M; Mou ZL; Zhang RL; Liang SS; Zhang ZQ
    Biosens Bioelectron; 2017 May; 91():162-168. PubMed ID: 28006684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of DNA utilizing a fluorescent reversible change of a biosensor based on the electron transfer from quantum dots to polymyxin B sulfate.
    Wang L; Liu S; Liang W; Li D; Yang J; He Y
    J Colloid Interface Sci; 2015 Jun; 448():257-64. PubMed ID: 25744859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A selective determination of copper ions in water samples based on the fluorescence quenching of thiol-capped CdTe quantum dots.
    Nurerk P; Kanatharana P; Bunkoed O
    Luminescence; 2016 Mar; 31(2):515-522. PubMed ID: 26250550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A FRET ratiometric fluorescence sensing system for mercury detection and intracellular colorimetric imaging in live Hela cells.
    Hu B; Hu LL; Chen ML; Wang JH
    Biosens Bioelectron; 2013 Nov; 49():499-505. PubMed ID: 23811485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MPA-CdTe quantum dots as "on-off-on" sensitive fluorescence probe to detect ascorbic acid via redox reaction.
    Ding M; Wang K; Fang M; Zhu W; Du L; Li C
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118249. PubMed ID: 32179461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Fluorescent Switch Sensor for Glutathione Detection Based on Mn-doped CdTe Quantum Dots - Methyl Viologen Nanohybrids.
    Yu L; Li L; Ding Y; Lu Y
    J Fluoresc; 2016 Mar; 26(2):651-60. PubMed ID: 26780768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive and selective sensor for biothiols in the cell based on the recovered fluorescence of the CdTe quantum dots-Hg(II) system.
    Han B; Yuan J; Wang E
    Anal Chem; 2009 Jul; 81(13):5569-73. PubMed ID: 19499913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodegradation of Mercaptopropionic Acid- and Thioglycollic Acid-Capped CdTe Quantum Dots in Buffer Solutions.
    Miao Y; Yang P; Zhao J; Du Y; He H; Liu Y
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4462-9. PubMed ID: 26369066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly selective and simple fluorescent sensor for mercury (II) ion detection based on cysteamine-capped CdTe quantum dots synthesized by the reflux method.
    Ding X; Qu L; Yang R; Zhou Y; Li J
    Luminescence; 2015 Jun; 30(4):465-71. PubMed ID: 25263990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-covalent conjugation of CdTe QDs with lysozyme binding DNA for fluorescent sensing of lysozyme in complex biological sample.
    Li S; Gao Z; Shao N
    Talanta; 2014 Nov; 129():86-92. PubMed ID: 25127568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of glutathione-capped CdS quantum dots and preliminary studies on protein detection and cell fluorescence image.
    Jiang C; Xu S; Yang D; Zhang F; Wang W
    Luminescence; 2007; 22(5):430-7. PubMed ID: 17492630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of denatured bovine serum albumin coated CdTe quantum dots for sensitive detection of silver(I) ions.
    Wang JH; Wang HQ; Zhang HL; Li XQ; Hua XF; Cao YC; Huang ZL; Zhao YD
    Anal Bioanal Chem; 2007 Jun; 388(4):969-74. PubMed ID: 17468858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bovine serum albumin coated CuInS2 quantum dots as a near-infrared fluorescence probe for 2,4,6-trinitrophenol detection.
    Liu S; Shi F; Chen L; Su X
    Talanta; 2013 Nov; 116():870-5. PubMed ID: 24148487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence quenching investigation on the interaction of glutathione-CdTe/CdS quantum dots with sanguinarine and its analytical application.
    Shen Y; Liu S; He Y
    Luminescence; 2014 Mar; 29(2):176-82. PubMed ID: 23640753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.