These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 22608848)
41. Enhanced magnetic resonance imaging and staining of cancer cells using ferrimagnetic H-ferritin nanoparticles with increasing core size. Cai Y; Cao C; He X; Yang C; Tian L; Zhu R; Pan Y Int J Nanomedicine; 2015; 10():2619-34. PubMed ID: 25878496 [TBL] [Abstract][Full Text] [Related]
42. Gadolinium-labeled peptide dendrimers with controlled structures as potential magnetic resonance imaging contrast agents. Luo K; Liu G; She W; Wang Q; Wang G; He B; Ai H; Gong Q; Song B; Gu Z Biomaterials; 2011 Nov; 32(31):7951-60. PubMed ID: 21784511 [TBL] [Abstract][Full Text] [Related]
43. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids. Feng J; Liu H; Zhang L; Bhakoo K; Lu L Nanotechnology; 2010 Oct; 21(39):395101. PubMed ID: 20820093 [TBL] [Abstract][Full Text] [Related]
44. The formulation, characterization and in vivo evaluation of a magnetic carrier for brain delivery of NIR dye. Raut SL; Kirthivasan B; Bommana MM; Squillante E; Sadoqi M Nanotechnology; 2010 Oct; 21(39):395102. PubMed ID: 20820096 [TBL] [Abstract][Full Text] [Related]
45. Development of MRI/NIRF 'activatable' multimodal imaging probe based on iron oxide nanoparticles. Cha EJ; Jang ES; Sun IC; Lee IJ; Ko JH; Kim YI; Kwon IC; Kim K; Ahn CH J Control Release; 2011 Oct; 155(2):152-8. PubMed ID: 21801769 [TBL] [Abstract][Full Text] [Related]
46. Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Yang H; Zhang C; Shi X; Hu H; Du X; Fang Y; Ma Y; Wu H; Yang S Biomaterials; 2010 May; 31(13):3667-73. PubMed ID: 20144480 [TBL] [Abstract][Full Text] [Related]
47. [Structural changes of some organs in rats after a single intravenous injection of magnetite nanoparticles]. Mil'to IV; Sukhodolo IV Morfologiia; 2012; 141(2):49-53. PubMed ID: 22913139 [TBL] [Abstract][Full Text] [Related]
49. Long-term biodistribution and biocompatibility investigation of dextran-coated magnetite nanoparticle using mice as the animal model. Estevanato LL; Lacava LM; Carvalho LC; Azevedo RB; Silva O; Pelegrini F; Báo SN; Morais PC; Lacava ZG J Biomed Nanotechnol; 2012 Apr; 8(2):301-8. PubMed ID: 22515081 [TBL] [Abstract][Full Text] [Related]
50. Serially Ordered Magnetization of Nanoclusters via Control of Various Transition Metal Dopants for the Multifractionation of Cells in Microfluidic Magnetophoresis Devices. Kang B; Cha B; Kim B; Han S; Shin MK; Jang E; Kim HO; Bae SR; Jeong U; Moon I; Son Hy; Huh YM; Haam S Anal Chem; 2016 Jan; 88(2):1078-82. PubMed ID: 26717968 [TBL] [Abstract][Full Text] [Related]
51. One-pot synthesis of magnetic nanoclusters enabling atherosclerosis-targeted magnetic resonance imaging. Kukreja A; Lim EK; Kang B; Choi Y; Lee T; Suh JS; Huh YM; Haam S Int J Nanomedicine; 2014; 9():2489-98. PubMed ID: 24904209 [TBL] [Abstract][Full Text] [Related]
52. Study of the intra-arterial distribution of Fe₃O₄ nanoparticles in a model of colorectal neoplasm induced in rat liver by MRI and spectrometry. Echevarria-Uraga JJ; García-Alonso I; Plazaola F; Insausti M; Etxebarria N; Saiz-López A; Fernández-Ruanova B Int J Nanomedicine; 2012; 7():2399-410. PubMed ID: 22661893 [TBL] [Abstract][Full Text] [Related]
53. Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Yang L; Kuang H; Zhang W; Aguilar ZP; Xiong Y; Lai W; Xu H; Wei H Nanoscale; 2015 Jan; 7(2):625-36. PubMed ID: 25423473 [TBL] [Abstract][Full Text] [Related]
54. Iron metabolism after application of modified magnetite nanoparticles in rats. Milto IV; Grishanova AY; Klimenteva TK; Suhodolo IV; Vasukov GY; Ivanova VV Biochemistry (Mosc); 2014 Nov; 79(11):1245-54. PubMed ID: 25540010 [TBL] [Abstract][Full Text] [Related]
55. Magnetic mesoporous nanospheres anchored with LyP-1 as an efficient pancreatic cancer probe. Jiang Y; Liu S; Zhang Y; Li H; He H; Dai J; Jiang T; Ji W; Geng D; Elzatahry AA; Alghamdi A; Fu D; Deng Y; Zhao D Biomaterials; 2017 Jan; 115():9-18. PubMed ID: 27871003 [TBL] [Abstract][Full Text] [Related]
56. Relaxivity control of magnetic nanoclusters for efficient magnetic relaxation switching assay. Cha J; Kwon YS; Yoon TJ; Lee JK Chem Commun (Camb); 2013 Jan; 49(5):457-9. PubMed ID: 23100091 [TBL] [Abstract][Full Text] [Related]
57. Prospects for magnetic nanoparticles in systemic administration: synthesis and quantitative detection. Gutiérrez L; Morales MP; Lázaro FJ Phys Chem Chem Phys; 2014 Mar; 16(10):4456-64. PubMed ID: 24468801 [TBL] [Abstract][Full Text] [Related]
58. In situ self-assembled Ag-Fe Tayyaba ; Rehman FU; Shaikh S; Tanziela ; Semcheddine F; Du T; Jiang H; Wang X J Mater Chem B; 2020 Apr; 8(14):2845-2855. PubMed ID: 32175535 [TBL] [Abstract][Full Text] [Related]
59. Hydrophilic probe in mesoporous pore for selective enrichment of endogenous glycopeptides in biological samples. Li Y; Deng C; Sun N Anal Chim Acta; 2018 Sep; 1024():84-92. PubMed ID: 29776550 [TBL] [Abstract][Full Text] [Related]
60. Design and characterization of biofunctional magnetic porous silicon flakes. Muñoz Noval A; García R; Ruiz Casas D; Losada Bayo D; Sánchez Vaquero V; Torres Costa V; Martín Palma RJ; García MA; García Ruiz JP; Serrano Olmedo JJ; Muñoz Negrete JF; del Pozo Guerrero F; Manso Silván M Acta Biomater; 2013 Apr; 9(4):6169-76. PubMed ID: 23237987 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]