BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 22608946)

  • 1. The occurrence and distribution of pharmaceutical compounds in the effluents of a major sewage treatment plant in Northern Taiwan and the receiving coastal waters.
    Fang TH; Nan FH; Chin TS; Feng HM
    Mar Pollut Bull; 2012 Jul; 64(7):1435-44. PubMed ID: 22608946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment.
    Verlicchi P; Al Aukidy M; Galletti A; Petrovic M; Barceló D
    Sci Total Environ; 2012 Jul; 430():109-18. PubMed ID: 22634557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discharge of pharmaceutical products (PPs) through a conventional biological sewage treatment plant: MECs vs PECs?
    Coetsier CM; Spinelli S; Lin L; Roig B; Touraud E
    Environ Int; 2009 Jul; 35(5):787-92. PubMed ID: 19201471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The occurrence of acidic drugs and caffeine in sewage effluents and receiving waters from three coastal watersheds in Atlantic Canada.
    Comeau F; Surette C; Brun GL; Losier R
    Sci Total Environ; 2008 Jun; 396(2-3):132-46. PubMed ID: 18377954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy.
    Al Aukidy M; Verlicchi P; Jelic A; Petrovic M; Barcelò D
    Sci Total Environ; 2012 Nov; 438():15-25. PubMed ID: 22967493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden.
    Bendz D; Paxéus NA; Ginn TR; Loge FJ
    J Hazard Mater; 2005 Jul; 122(3):195-204. PubMed ID: 15967274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain).
    Biel-Maeso M; Baena-Nogueras RM; Corada-Fernández C; Lara-Martín PA
    Sci Total Environ; 2018 Jan; 612():649-659. PubMed ID: 28866393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea.
    Choi K; Kim Y; Park J; Park CK; Kim M; Kim HS; Kim P
    Sci Total Environ; 2008 Nov; 405(1-3):120-8. PubMed ID: 18684486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Input of selected human pharmaceutical metabolites into the Norwegian aquatic environment.
    Langford K; Thomas KV
    J Environ Monit; 2011 Feb; 13(2):416-21. PubMed ID: 21152649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probabilistic environmental risk characterization of pharmaceuticals in sewage treatment plant discharges.
    Christensen AM; Markussen B; Baun A; Halling-Sørensen B
    Chemosphere; 2009 Oct; 77(3):351-8. PubMed ID: 19682723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska.
    Bartelt-Hunt SL; Snow DD; Damon T; Shockley J; Hoagland K
    Environ Pollut; 2009 Mar; 157(3):786-91. PubMed ID: 19110357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan.
    Lin AY; Yu TH; Lin CF
    Chemosphere; 2008 Dec; 74(1):131-41. PubMed ID: 18829065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental fate of pharmaceutical compounds and antimicrobial-resistant bacteria in hospital effluents, and contributions to pollutant loads in the surface waters in Japan.
    Azuma T; Otomo K; Kunitou M; Shimizu M; Hosomaru K; Mikata S; Ishida M; Hisamatsu K; Yunoki A; Mino Y; Hayashi T
    Sci Total Environ; 2019 Mar; 657():476-484. PubMed ID: 30550911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the fraction of pharmaceutical residues in wastewater originating from a hospital.
    Ort C; Lawrence MG; Reungoat J; Eaglesham G; Carter S; Keller J
    Water Res; 2010 Jan; 44(2):605-15. PubMed ID: 19717180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence of anionic surfactants in treated sewage: risk assessment to aquatic environment.
    Mungray AK; Kumar P
    J Hazard Mater; 2008 Dec; 160(2-3):362-70. PubMed ID: 18430511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies.
    Ying GG; Kookana RS; Kolpin DW
    J Environ Monit; 2009 Aug; 11(8):1498-505. PubMed ID: 19657534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmaceuticals and personal care products (PPCPs) in Australia's largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow.
    Roberts J; Kumar A; Du J; Hepplewhite C; Ellis DJ; Christy AG; Beavis SG
    Sci Total Environ; 2016 Jan; 541():1625-1637. PubMed ID: 26456435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmaceutical compounds in the wastewater process stream in Northwest Ohio.
    Spongberg AL; Witter JD
    Sci Total Environ; 2008 Jul; 397(1-3):148-57. PubMed ID: 18396321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial degradation of pharmaceuticals in estuarine and coastal seawater.
    Benotti MJ; Brownawell BJ
    Environ Pollut; 2009 Mar; 157(3):994-1002. PubMed ID: 19038482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of carbamazepine in sewage treatment plant effluents and its implications for control strategies of pharmaceutical aquatic contamination.
    Zhang Y; Geissen SU
    Chemosphere; 2010 Sep; 80(11):1345-52. PubMed ID: 20594577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.