BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22609093)

  • 41. Characterization, degradation, and mechanical strength of poly(D,L-lactide-co-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-co-epsilon-caprolactone).
    Bramfeldt H; Sarazin P; Vermette P
    J Biomed Mater Res A; 2007 Nov; 83(2):503-11. PubMed ID: 17503493
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL) nanoparticles for honokiol delivery in vitro.
    Gou M; Zheng L; Peng X; Men K; Zheng X; Zeng S; Guo G; Luo F; Zhao X; Chen L; Wei Y; Qian Z
    Int J Pharm; 2009 Jun; 375(1-2):170-6. PubMed ID: 19427143
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced pH stability, cell viability and reduced degradation rate of poly(L-lactide)-based composite in vitro: effect of modified magnesium oxide nanoparticles.
    Yang J; Cao X; Zhao Y; Wang L; Liu B; Jia J; Liang H; Chen M
    J Biomater Sci Polym Ed; 2017 Apr; 28(5):486-503. PubMed ID: 28054502
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation, stability and cytocompatibility of magnetic/PLA-PEG hybrids.
    Bakandritsos A; Mattheolabakis G; Zboril R; Bouropoulos N; Tucek J; Fatouros DG; Avgoustakis K
    Nanoscale; 2010 Apr; 2(4):564-72. PubMed ID: 20644760
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermoresponsive block copolymers of poly(ethylene glycol) and polyphosphoester: thermo-induced self-assembly, biocompatibility, and hydrolytic degradation.
    Wang YC; Tang LY; Li Y; Wang J
    Biomacromolecules; 2009 Jan; 10(1):66-73. PubMed ID: 19133835
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture.
    Yu M; Huang S; Yu KJ; Clyne AM
    Int J Mol Sci; 2012; 13(5):5554-5570. PubMed ID: 22754315
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of ethylene oxide gas sterilization on physical properties of poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) microspheres.
    Ah YC; Choi Y; Kim SY; Kim SH; Lee KS; Byun Y
    J Biomater Sci Polym Ed; 2001; 12(7):783-99. PubMed ID: 11587041
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and in vitro safety assessment of magnetic bacterial cellulose with porcine aortic smooth muscle cells.
    Pastrana HF; Cooper CL; Alucozai M; Reece LM; Avila AG; Allain JP
    J Biomed Mater Res A; 2016 Nov; 104(11):2801-9. PubMed ID: 27376695
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein corona acts as a protective shield against Fe3O4-PEG inflammation and ROS-induced toxicity in human macrophages.
    Escamilla-Rivera V; Uribe-Ramírez M; González-Pozos S; Lozano O; Lucas S; De Vizcaya-Ruiz A
    Toxicol Lett; 2016 Jan; 240(1):172-84. PubMed ID: 26518974
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biocompatibility of magnetic Fe₃O₄ nanoparticles and their cytotoxic effect on MCF-7 cells.
    Chen D; Tang Q; Li X; Zhou X; Zang J; Xue WQ; Xiang JY; Guo CQ
    Int J Nanomedicine; 2012; 7():4973-82. PubMed ID: 23028225
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In Vitro Biocompatibility, Radiopacity, and Physical Property Tests of Nano-Fe₃O₄ Incorporated Poly-l-lactide Bone Screws.
    Wang HT; Chiang PC; Tzeng JJ; Wu TL; Pan YH; Chang WJ; Huang HM
    Polymers (Basel); 2017 May; 9(6):. PubMed ID: 30970868
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility.
    Bauer M; Lautenschlaeger C; Kempe K; Tauhardt L; Schubert US; Fischer D
    Macromol Biosci; 2012 Jul; 12(7):986-98. PubMed ID: 22648985
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photo-crosslinked fabrication of novel biocompatible and elastomeric star-shaped inositol-based polymer with highly tunable mechanical behavior and degradation.
    Xie M; Ge J; Xue Y; Du Y; Lei B; Ma PX
    J Mech Behav Biomed Mater; 2015 Nov; 51():163-8. PubMed ID: 26253207
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coat Protein-Dependent Behavior of Poly(ethylene glycol) Tails in Iron Oxide Core Virus-like Nanoparticles.
    Malyutin AG; Cheng H; Sanchez-Felix OR; Carlson K; Stein BD; Konarev PV; Svergun DI; Dragnea B; Bronstein LM
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12089-98. PubMed ID: 25989427
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The cytotoxicity of polycationic iron oxide nanoparticles: common endpoint assays and alternative approaches for improved understanding of cellular response mechanism.
    Hoskins C; Cuschieri A; Wang L
    J Nanobiotechnology; 2012 Apr; 10():15. PubMed ID: 22510488
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation.
    Xu M; Zhu J; Wang F; Xiong Y; Wu Y; Wang Q; Weng J; Zhang Z; Chen W; Liu S
    ACS Nano; 2016 Mar; 10(3):3267-81. PubMed ID: 26855010
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Toxicity of iron oxide nanoparticles: Size and coating effects.
    Abakumov MA; Semkina AS; Skorikov AS; Vishnevskiy DA; Ivanova AV; Mironova E; Davydova GA; Majouga AG; Chekhonin VP
    J Biochem Mol Toxicol; 2018 Dec; 32(12):e22225. PubMed ID: 30290022
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells.
    Aranda A; Sequedo L; Tolosa L; Quintas G; Burello E; Castell JV; Gombau L
    Toxicol In Vitro; 2013 Mar; 27(2):954-63. PubMed ID: 23357416
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo biocompatibility studies of poly(D,L-lactide)/poly(ethylene glycol)-poly(L-lactide) microspheres containing all-trans-retinoic acid.
    Choi Y; Kim SY; Kim SH; Park TG; Moon HT; Byun Y
    J Biomater Sci Polym Ed; 2002; 13(3):301-22. PubMed ID: 12102596
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Accumulated polymer degradation products as effector molecules in cytotoxicity of polymeric nanoparticles.
    Singh RP; Ramarao P
    Toxicol Sci; 2013 Nov; 136(1):131-43. PubMed ID: 23976781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.