These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22609119)

  • 1. Predicting energy expenditure of manual wheelchair users with spinal cord injury using a multisensor-based activity monitor.
    Hiremath SV; Ding D; Farringdon J; Cooper RA
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1937-43. PubMed ID: 22609119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical activity classification utilizing SenseWear activity monitor in manual wheelchair users with spinal cord injury.
    Hiremath SV; Ding D; Farringdon J; Vyas N; Cooper RA
    Spinal Cord; 2013 Sep; 51(9):705-9. PubMed ID: 23689386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of Energy Expenditure for Wheelchair Users Using a Physical Activity Monitoring System.
    Hiremath SV; Intille SS; Kelleher A; Cooper RA; Ding D
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1146-1153.e1. PubMed ID: 26976800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of custom energy expenditure models for SenseWear armband in manual wheelchair users.
    Tsang K; Hiremath SV; Cooper RA; Ding D
    J Rehabil Res Dev; 2015; 52(7):793-803. PubMed ID: 26745837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regression equations for RT3 activity monitors to estimate energy expenditure in manual wheelchair users.
    Hiremath SV; Ding D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7348-51. PubMed ID: 22256036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of activity monitors to estimate energy expenditure in manual wheelchair users.
    Hiremath SV; Ding D
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():835-8. PubMed ID: 19964247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of the use of Actigraph GT3X accelerometers to estimate energy expenditure in full time manual wheelchair users with spinal cord injury.
    García-Massó X; Serra-Añó P; García-Raffi LM; Sánchez-Pérez EA; López-Pascual J; Gonzalez LM
    Spinal Cord; 2013 Dec; 51(12):898-903. PubMed ID: 23999111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of activity monitors in manual wheelchair users with paraplegia.
    Hiremath SV; Ding D
    J Spinal Cord Med; 2011; 34(1):110-7. PubMed ID: 21528634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary study for the assessment of physical activity using a triaxial accelerometer with a gyro sensor on the upper limbs of subjects with paraplegia driving a wheelchair on a treadmill.
    Kiuchi K; Inayama T; Muraoka Y; Ikemoto S; Uemura O; Mizuno K
    Spinal Cord; 2014 Jul; 52(7):556-63. PubMed ID: 24819509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonographic Measures of the Acromiohumeral Distance and Supraspinatus Tendon Thickness in Manual Wheelchair Users With Spinal Cord Injury.
    Fournier Belley A; Gagnon DH; Routhier F; Roy JS
    Arch Phys Med Rehabil; 2017 Mar; 98(3):517-524. PubMed ID: 27431359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filter frequency selection for manual wheelchair biomechanics.
    Cooper RA; DiGiovine CP; Boninger ML; Shimada SD; Koontz AM; Baldwin MA
    J Rehabil Res Dev; 2002; 39(3):323-36. PubMed ID: 12173753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative validity of energy expenditure prediction algorithms using wearable devices for people with spinal cord injury.
    Shwetar YJ; Veerubhotla AL; Huang Z; Ding D
    Spinal Cord; 2020 Jul; 58(7):821-830. PubMed ID: 32020039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting energy expenditure through hand rim propulsion power output in individuals who use wheelchairs.
    Conger SA; Scott SN; Bassett DR
    Br J Sports Med; 2014 Jul; 48(13):1048-53. PubMed ID: 24825852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power-assisted wheels ease energy costs and perceptual responses to wheelchair propulsion in persons with shoulder pain and spinal cord injury.
    Nash MS; Koppens D; van Haaren M; Sherman AL; Lippiatt JP; Lewis JE
    Arch Phys Med Rehabil; 2008 Nov; 89(11):2080-5. PubMed ID: 18996235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is manual wheelchair satisfaction related to active lifestyle and participation in people with a spinal cord injury?
    de Groot S; Post MW; Bongers-Janssen HM; Bloemen-Vrencken JH; van der Woude LH
    Spinal Cord; 2011 Apr; 49(4):560-5. PubMed ID: 21042333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheelchair-related falls in veterans with spinal cord injury residing in the community: a prospective cohort study.
    Nelson AL; Groer S; Palacios P; Mitchell D; Sabharwal S; Kirby RL; Gavin-Dreschnack D; Powell-Cope G
    Arch Phys Med Rehabil; 2010 Aug; 91(8):1166-73. PubMed ID: 20684896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of experience on the energy cost of wheelchair propulsion.
    Croft L; Lenton J; Tolfrey K; Goosey-Tolfrey V
    Eur J Phys Rehabil Med; 2013 Dec; 49(6):865-73. PubMed ID: 23558701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a new motion sensor in patients with chronic obstructive pulmonary disease.
    Sant'Anna T; Escobar VC; Fontana AD; Camillo CA; Hernandes NA; Pitta F
    Arch Phys Med Rehabil; 2012 Dec; 93(12):2319-25. PubMed ID: 22705466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.