BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22609369)

  • 1. The complexity of virus systems: the case of endosymbionts.
    Metcalf JA; Bordenstein SR
    Curr Opin Microbiol; 2012 Aug; 15(4):546-52. PubMed ID: 22609369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phage WO of Wolbachia: lambda of the endosymbiont world.
    Kent BN; Bordenstein SR
    Trends Microbiol; 2010 Apr; 18(4):173-81. PubMed ID: 20083406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods.
    Masui S; Kamoda S; Sasaki T; Ishikawa H
    J Mol Evol; 2000 Nov; 51(5):491-7. PubMed ID: 11080372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteriophage WO and virus-like particles in Wolbachia, an endosymbiont of arthropods.
    Masui S; Kuroiwa H; Sasaki T; Inui M; Kuroiwa T; Ishikawa H
    Biochem Biophys Res Commun; 2001 May; 283(5):1099-104. PubMed ID: 11355885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete WO phage sequences reveal their dynamic evolutionary trajectories and putative functional elements required for integration into the Wolbachia genome.
    Tanaka K; Furukawa S; Nikoh N; Sasaki T; Fukatsu T
    Appl Environ Microbiol; 2009 Sep; 75(17):5676-86. PubMed ID: 19592535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR) for determination of a highly degenerated prophage WO genome in a Wolbachia strain infecting a fig wasp species.
    Wang GH; Xiao JH; Xiong TL; Li Z; Murphy RW; Huang DW
    Appl Environ Microbiol; 2013 Dec; 79(23):7476-81. PubMed ID: 24077701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont.
    Fujii Y; Kubo T; Ishikawa H; Sasaki T
    Biochem Biophys Res Commun; 2004 May; 317(4):1183-8. PubMed ID: 15094394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete bacteriophage transfer in a bacterial endosymbiont (Wolbachia) determined by targeted genome capture.
    Kent BN; Salichos L; Gibbons JG; Rokas A; Newton IL; Clark ME; Bordenstein SR
    Genome Biol Evol; 2011; 3():209-18. PubMed ID: 21292630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility.
    Bordenstein SR; Bordenstein SR
    PLoS One; 2011; 6(12):e29106. PubMed ID: 22194999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread phages of endosymbionts: Phage WO genomics and the proposed taxonomic classification of Symbioviridae.
    Bordenstein SR; Bordenstein SR
    PLoS Genet; 2022 Jun; 18(6):e1010227. PubMed ID: 35666732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bacteriophage WORiC is the active phage element in wRi of Drosophila simulans and represents a conserved class of WO phages.
    Biliske JA; Batista PD; Grant CL; Harris HL
    BMC Microbiol; 2011 Nov; 11():251. PubMed ID: 22085419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of a novel bacteriophage WO from Allonemobius socius crickets in Missouri.
    Kupritz J; Martin J; Fischer K; Curtis KC; Fauver JR; Huang Y; Choi YJ; Beatty WL; Mitreva M; Fischer PU
    PLoS One; 2021; 16(7):e0250051. PubMed ID: 34197460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary genomics of a temperate bacteriophage in an obligate intracellular bacteria (Wolbachia).
    Kent BN; Funkhouser LJ; Setia S; Bordenstein SR
    PLoS One; 2011; 6(9):e24984. PubMed ID: 21949820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Survey of the bacteriophage WO in the endosymbiotic bacteria Wolbachia.
    Gavotte L; Henri H; Stouthamer R; Charif D; Charlat S; Boulétreau M; Vavre F
    Mol Biol Evol; 2007 Feb; 24(2):427-35. PubMed ID: 17095536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates.
    Bordenstein SR; Wernegreen JJ
    Mol Biol Evol; 2004 Oct; 21(10):1981-91. PubMed ID: 15254259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Titer regulation in arthropod-Wolbachia symbioses.
    López-Madrigal S; Duarte EH
    FEMS Microbiol Lett; 2019 Dec; 366(23):. PubMed ID: 31750894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateral phage transfer in obligate intracellular bacteria (wolbachia): verification from natural populations.
    Chafee ME; Funk DJ; Harrison RG; Bordenstein SR
    Mol Biol Evol; 2010 Mar; 27(3):501-5. PubMed ID: 19906794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tripartite associations among bacteriophage WO, Wolbachia, and host affected by temperature and age in Tetranychus urticae.
    Lu MH; Zhang KJ; Hong XY
    Exp Appl Acarol; 2012 Nov; 58(3):207-20. PubMed ID: 22669278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary Genetics of Cytoplasmic Incompatibility Genes cifA and cifB in Prophage WO of Wolbachia.
    Lindsey ARI; Rice DW; Bordenstein SR; Brooks AW; Bordenstein SR; Newton ILG
    Genome Biol Evol; 2018 Feb; 10(2):434-451. PubMed ID: 29351633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tripartite associations between bacteriophage, Wolbachia, and arthropods.
    Bordenstein SR; Marshall ML; Fry AJ; Kim U; Wernegreen JJ
    PLoS Pathog; 2006 May; 2(5):e43. PubMed ID: 16710453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.