These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 22609584)
1. Simple surface treatment using amphiphilic phospholipid polymers to obtain wetting and lubricity on polydimethylsiloxane-based substrates. Fukazawa K; Ishihara K Colloids Surf B Biointerfaces; 2012 Sep; 97():70-6. PubMed ID: 22609584 [TBL] [Abstract][Full Text] [Related]
2. Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Sibarani J; Takai M; Ishihara K Colloids Surf B Biointerfaces; 2007 Jan; 54(1):88-93. PubMed ID: 17112710 [TBL] [Abstract][Full Text] [Related]
3. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Goda T; Konno T; Takai M; Moro T; Ishihara K Biomaterials; 2006 Oct; 27(30):5151-60. PubMed ID: 16797692 [TBL] [Abstract][Full Text] [Related]
4. Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling--deswelling methods with phospholipids moiety containing ABA-type block copolymers. Seo JH; Matsuno R; Konno T; Takai M; Ishihara K Biomaterials; 2008 Apr; 29(10):1367-76. PubMed ID: 18155763 [TBL] [Abstract][Full Text] [Related]
5. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
6. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes. Liu Y; Inoue Y; Sakata S; Kakinoki S; Yamaoka T; Ishihara K J Biomater Sci Polym Ed; 2014; 25(5):474-86. PubMed ID: 24417469 [TBL] [Abstract][Full Text] [Related]
7. Photoinduced phospholipid polymer grafting on Parylene film: advanced lubrication and antibiofouling properties. Goda T; Konno T; Takai M; Ishihara K Colloids Surf B Biointerfaces; 2007 Jan; 54(1):67-73. PubMed ID: 17137760 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of photoreactive phospholipid polymers for use in versatile surface modification of various materials to obtain extreme wettability. Fukazawa K; Ishihara K ACS Appl Mater Interfaces; 2013 Aug; 5(15):6832-6. PubMed ID: 23905848 [TBL] [Abstract][Full Text] [Related]
9. Antifouling properties of poly(dimethylsiloxane) surfaces modified with quaternized poly(dimethylaminoethyl methacrylate). Tu Q; Wang JC; Liu R; He J; Zhang Y; Shen S; Xu J; Liu J; Yuan MS; Wang J Colloids Surf B Biointerfaces; 2013 Feb; 102():361-70. PubMed ID: 23006574 [TBL] [Abstract][Full Text] [Related]
10. Effects of phospholipid adsorption on nonthrombogenicity of polymer with phospholipid polar group. Ishihara K; Oshida H; Endo Y; Watanabe A; Ueda T; Nakabayashi N J Biomed Mater Res; 1993 Oct; 27(10):1309-14. PubMed ID: 8245045 [TBL] [Abstract][Full Text] [Related]
11. Self-assembled epoxy-modified polymer coating on a poly(dimethylsiloxane) microchip for EOF inhibition and biopolymers separation. Wu D; Qin J; Lin B Lab Chip; 2007 Nov; 7(11):1490-6. PubMed ID: 17960276 [TBL] [Abstract][Full Text] [Related]
12. Adsorption and aqueous lubricating properties of charged and neutral amphiphilic diblock copolymers at a compliant, hydrophobic interface. Røn T; Javakhishvili I; Jankova K; Hvilsted S; Lee S Langmuir; 2013 Jun; 29(25):7782-92. PubMed ID: 23725290 [TBL] [Abstract][Full Text] [Related]
13. Surface modification of PDMS by surface-initiated atom transfer radical polymerization of water-soluble dendronized PEG methacrylate. Zhang Z; Wang J; Tu Q; Nie N; Sha J; Liu W; Liu R; Zhang Y; Wang J Colloids Surf B Biointerfaces; 2011 Nov; 88(1):85-92. PubMed ID: 21752608 [TBL] [Abstract][Full Text] [Related]
14. Rapid development of hydrophilicity and protein adsorption resistance by polymer surfaces bearing phosphorylcholine and naphthalene groups. Futamura K; Matsuno R; Konno T; Takai M; Ishihara K Langmuir; 2008 Sep; 24(18):10340-4. PubMed ID: 18698868 [TBL] [Abstract][Full Text] [Related]
15. Surface modification with well-defined biocompatible triblock copolymers Improvement of biointerfacial phenomena on a poly(dimethylsiloxane) surface. Iwasaki Y; Takamiya M; Iwata R; Yusa S; Akiyoshi K Colloids Surf B Biointerfaces; 2007 Jun; 57(2):226-36. PubMed ID: 17360164 [TBL] [Abstract][Full Text] [Related]
16. Asymmetric electrostatic and hydrophobic-hydrophilic interaction forces between mica surfaces and silicone polymer thin films. Donaldson SH; Das S; Gebbie MA; Rapp M; Jones LC; Roiter Y; Koenig PH; Gizaw Y; Israelachvili JN ACS Nano; 2013 Nov; 7(11):10094-104. PubMed ID: 24138532 [TBL] [Abstract][Full Text] [Related]
17. Enhancing the settlement and attachment strength of pediveligers of Mytilus galloprovincialis by changing surface wettability and microtopography. Carl C; Poole AJ; Sexton BA; Glenn FL; Vucko MJ; Williams MR; Whalan S; de Nys R Biofouling; 2012; 28(2):175-86. PubMed ID: 22332795 [TBL] [Abstract][Full Text] [Related]
18. Tribological properties of hydrophilic polymer brushes under wet conditions. Kobayashi M; Takahara A Chem Rec; 2010 Aug; 10(4):208-16. PubMed ID: 20533448 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Yusa S; Fukuda K; Yamamoto T; Ishihara K; Morishima Y Biomacromolecules; 2005; 6(2):663-70. PubMed ID: 15762627 [TBL] [Abstract][Full Text] [Related]
20. Long-lasting hydrophilic surface generated on poly(dimethyl siloxane) with photoreactive zwitterionic polymers. Nakano H; Kakinoki S; Iwasaki Y Colloids Surf B Biointerfaces; 2021 Sep; 205():111900. PubMed ID: 34102530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]