These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22609594)

  • 1. Adhesion of nano-sized particles to the surface of bacteria: mechanistic study with the extended DLVO theory.
    Hwang G; Ahn IS; Mhin BJ; Kim JY
    Colloids Surf B Biointerfaces; 2012 Sep; 97():138-44. PubMed ID: 22609594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the adhesion of Pseudomonas putida NCIB 9816-4 to a silica gel as a model soil using extended DLVO theory.
    Hwang G; Lee CH; Ahn IS; Mhin BJ
    J Hazard Mater; 2010 Jul; 179(1-3):983-8. PubMed ID: 20399555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial adhesion to hydrocarbons: role of asphaltenes and resins.
    Warne Zoueki C; Ghoshal S; Tufenkji N
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):219-26. PubMed ID: 20452190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial bacterial attachment in slow flowing systems: effects of cell and substrate surface properties.
    Wang H; Sodagari M; Chen Y; He X; Newby BM; Ju LK
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):415-22. PubMed ID: 21715146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of silica nanoparticles with a flat silica surface through neutron reflectometry.
    Chung E; Yiacoumi S; Halbert C; Ankner J; Wang W; Kim C; Tsouris C
    Environ Sci Technol; 2012 Apr; 46(8):4532-8. PubMed ID: 22424549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of shear on initial bacterial attachment in slow flowing systems.
    Wang H; Sodagari M; Ju LK; Zhang Newby BM
    Colloids Surf B Biointerfaces; 2013 Sep; 109():32-9. PubMed ID: 23603040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevance of electrokinetic theory for "soft" particles to bacterial cells: implications for bacterial adhesion.
    de Kerchove AJ; Elimelech M
    Langmuir; 2005 Jul; 21(14):6462-72. PubMed ID: 15982054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial surface thermodynamics and applications.
    Strevett KA; Chen G
    Res Microbiol; 2003 Jun; 154(5):329-35. PubMed ID: 12837508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretation of adhesion behaviors between bacteria and modified basalt fiber by surface thermodynamics and extended DLVO theory.
    Zhang X; Zhou X; Xi H; Sun J; Liang X; Wei J; Xiao X; Liu Z; Li S; Liang Z; Chen Y; Wu Z
    Colloids Surf B Biointerfaces; 2019 May; 177():454-461. PubMed ID: 30802829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of the initial adhesion of biofilm forming Pseudomonas putida mt2 on physico-chemical material properties.
    Montag D; Frant M; Horn H; Liefeith K
    Biofouling; 2012; 28(3):315-27. PubMed ID: 22452391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of solution chemistry and ion valence on the adhesion kinetics of groundwater and marine bacteria.
    Chen G; Walker SL
    Langmuir; 2007 Jun; 23(13):7162-9. PubMed ID: 17523680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of nutrient presence on the adhesion kinetics of Burkholderia cepacia G4g and ENV435g.
    Walker SL
    Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):181-8. PubMed ID: 16198545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry.
    Zhao W; Walker SL; Huang Q; Cai P
    Water Res; 2014 Apr; 53():35-46. PubMed ID: 24495985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of bacteria with specific biomaterial surface chemistries under flow conditions.
    Katsikogianni MG; Missirlis YF
    Acta Biomater; 2010 Mar; 6(3):1107-18. PubMed ID: 19671455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of ionic strength on the relationship of biopolymer conformation, DLVO contributions, and steric interactions to bioadhesion of Pseudomonas putida KT2442.
    Abu-Lail NI; Camesano TA
    Biomacromolecules; 2003; 4(4):1000-12. PubMed ID: 12857085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteria-polymeric membrane interactions: atomic force microscopy and XDLVO predictions.
    Thwala JM; Li M; Wong MC; Kang S; Hoek EM; Mamba BB
    Langmuir; 2013 Nov; 29(45):13773-82. PubMed ID: 24060232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of conditioning films on the initial adhesion of Burkholderia cepacia.
    Hwang G; Kang S; El-Din MG; Liu Y
    Colloids Surf B Biointerfaces; 2012 Mar; 91():181-8. PubMed ID: 22112498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillational motion properties of bacteria and polystyrene particles on a positively polarized substrate surface.
    Shim S; Kang H; Ahn KH; Yoon J
    Colloids Surf B Biointerfaces; 2015 Oct; 134():240-6. PubMed ID: 26208295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of force interactions between AFM tips and hydrophobic bacteria using DLVO theory.
    Dorobantu LS; Bhattacharjee S; Foght JM; Gray MR
    Langmuir; 2009 Jun; 25(12):6968-76. PubMed ID: 19334745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial adhesion to glass and metal-oxide surfaces.
    Li B; Logan BE
    Colloids Surf B Biointerfaces; 2004 Jul; 36(2):81-90. PubMed ID: 15261011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.