BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 22609656)

  • 1. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst.
    Ya'aini N; Amin NA; Asmadi M
    Bioresour Technol; 2012 Jul; 116():58-65. PubMed ID: 22609656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic Conversion of Glucose into Levulinic Acid Using 2-Phenyl-2-Imidazoline Based Ionic Liquid Catalyst.
    Kumar K; Kumar M; Upadhyayula S
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33445440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids.
    Khan AS; Man Z; Bustam MA; Nasrullah A; Ullah Z; Sarwono A; Shah FU; Muhammad N
    Carbohydr Polym; 2018 Feb; 181():208-214. PubMed ID: 29253965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic Pretreatment Coupled with the Addition of p-Hydroxyanisole Increased Levulinic Acid Production from Steam-Exploded Rice Straw Short Fiber.
    Ma LT; Zhao ZM; Yu B; Chen HZ
    Appl Biochem Biotechnol; 2016 Nov; 180(5):945-953. PubMed ID: 27220515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of lignin production from empty fruit bunch via liquefaction with ionic liquid.
    Sidik DA; Ngadi N; Amin NA
    Bioresour Technol; 2013 May; 135():690-6. PubMed ID: 23186683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of sugars and levulinic acid from marine biomass Gelidium amansii.
    Jeong GT; Park DH
    Appl Biochem Biotechnol; 2010 May; 161(1-8):41-52. PubMed ID: 19830598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of levulinic acid from macroalgae by hydrothermal conversion with ionic resin catalyst.
    Park Y; Jeong GT
    Bioresour Technol; 2024 Jun; 402():130778. PubMed ID: 38701985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.
    Xie R; Tu M; Wu Y; Adhikari S
    Bioresour Technol; 2011 Apr; 102(7):4938-42. PubMed ID: 21316945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural.
    Jeong GT; Ra CH; Hong YK; Kim JK; Kong IS; Kim SK; Park DH
    Bioprocess Biosyst Eng; 2015 Feb; 38(2):207-17. PubMed ID: 25042893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass.
    Wijaya YP; Putra RD; Widyaya VT; Ha JM; Suh DJ; Kim CS
    Bioresour Technol; 2014 Jul; 164():221-31. PubMed ID: 24859214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofuel production by liquefaction of kenaf (Hibiscus cannabinus L.) biomass.
    Meryemoğlu B; Hasanoğlu A; Irmak S; Erbatur O
    Bioresour Technol; 2014 Jan; 151():278-83. PubMed ID: 24262837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass.
    Pileidis FD; Titirici MM
    ChemSusChem; 2016 Mar; 9(6):562-82. PubMed ID: 26847212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.
    Lahijani P; Zainal ZA
    Bioresour Technol; 2011 Jan; 102(2):2068-76. PubMed ID: 20980143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biobutanediol-mediated liquefaction of empty fruit bunch saccharification residues to prepare lignin biopolyols.
    Lee JH; Lee EY
    Bioresour Technol; 2016 May; 208():24-30. PubMed ID: 26918835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of levulinic acid and furfural production from Miscanthus × giganteus.
    Dussan K; Girisuta B; Haverty D; Leahy JJ; Hayes MH
    Bioresour Technol; 2013 Dec; 149():216-24. PubMed ID: 24103645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.
    Li J; Jiang Z; Hu L; Hu C
    ChemSusChem; 2014 Sep; 7(9):2482-8. PubMed ID: 25045141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of light olefins by catalytic conversion of lignocellulosic biomass with HZSM-5 zeolite impregnated with 6wt.% lanthanum.
    Huang W; Gong F; Fan M; Zhai Q; Hong C; Li Q
    Bioresour Technol; 2012 Oct; 121():248-55. PubMed ID: 22858493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions.
    Yüksel Özşen A
    Front Chem; 2020; 8():24. PubMed ID: 32117866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ash of palm empty fruit bunch as a natural catalyst for promoting the CO₂ gasification reactivity of biomass char.
    Lahijani P; Zainal ZA; Mohamed AR; Mohammadi M
    Bioresour Technol; 2013 Mar; 132():351-5. PubMed ID: 23195653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated process for the production of platform chemicals and diesel miscible fuels by acid-catalyzed hydrolysis and downstream upgrading of the acid hydrolysis residues with thermal and catalytic pyrolysis.
    Girisuta B; Kalogiannis KG; Dussan K; Leahy JJ; Hayes MH; Stefanidis SD; Michailof CM; Lappas AA
    Bioresour Technol; 2012 Dec; 126():92-100. PubMed ID: 23073094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.