These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 22609669)
1. Lignocellulose modifications by brown rot fungi and their effects, as pretreatments, on cellulolysis. Schilling JS; Ai J; Blanchette RA; Duncan SM; Filley TR; Tschirner UW Bioresour Technol; 2012 Jul; 116():147-54. PubMed ID: 22609669 [TBL] [Abstract][Full Text] [Related]
2. Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Schilling JS; Tewalt JP; Duncan SM Appl Microbiol Biotechnol; 2009 Sep; 84(3):465-75. PubMed ID: 19343340 [TBL] [Abstract][Full Text] [Related]
3. Assessment of saccharification efficacy in the cellulase system of the brown rot fungus Gloeophyllum trabeum. Tewalt J; Schilling J Appl Microbiol Biotechnol; 2010 May; 86(6):1785-93. PubMed ID: 20177887 [TBL] [Abstract][Full Text] [Related]
4. Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Monrroy M; Ortega I; Ramírez M; Baeza J; Freer J Enzyme Microb Technol; 2011 Oct; 49(5):472-7. PubMed ID: 22112620 [TBL] [Abstract][Full Text] [Related]
5. Fungal hydroquinones contribute to brown rot of wood. Suzuki MR; Hunt CG; Houtman CJ; Dalebroux ZD; Hammel KE Environ Microbiol; 2006 Dec; 8(12):2214-23. PubMed ID: 17107562 [TBL] [Abstract][Full Text] [Related]
6. Evidence for cleavage of lignin by a brown rot basidiomycete. Yelle DJ; Ralph J; Lu F; Hammel KE Environ Microbiol; 2008 Jul; 10(7):1844-9. PubMed ID: 18363712 [TBL] [Abstract][Full Text] [Related]
7. Using a grass substrate to compare decay among two clades of brown rot fungi. Kaffenberger JT; Schilling JS Appl Microbiol Biotechnol; 2013 Oct; 97(19):8831-40. PubMed ID: 23917637 [TBL] [Abstract][Full Text] [Related]
8. Enzyme production by wood-rot and soft-rot fungi cultivated on corn fiber followed by simultaneous saccharification and fermentation. Shrestha P; Khanal SK; Pometto AL; van Leeuwen JH J Agric Food Chem; 2009 May; 57(10):4156-61. PubMed ID: 21314197 [TBL] [Abstract][Full Text] [Related]
9. Distinct Growth and Secretome Strategies for Two Taxonomically Divergent Brown Rot Fungi. Presley GN; Schilling JS Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130302 [TBL] [Abstract][Full Text] [Related]
10. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi. Hastrup AC; Howell C; Larsen FH; Sathitsuksanoh N; Goodell B; Jellison J Fungal Biol; 2012 Oct; 116(10):1052-63. PubMed ID: 23063184 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analysis of the brown rot fungus Gloeophyllum trabeum during lignocellulose degradation. Umezawa K; Niikura M; Kojima Y; Goodell B; Yoshida M PLoS One; 2020; 15(12):e0243984. PubMed ID: 33315957 [TBL] [Abstract][Full Text] [Related]
12. Investigating lignin and hemicellulose in white rot fungus-pretreated wood that affect enzymatic hydrolysis. Wang W; Yuan T; Cui B; Dai Y Bioresour Technol; 2013 Apr; 134():381-5. PubMed ID: 23489565 [TBL] [Abstract][Full Text] [Related]
13. Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Yelle DJ; Wei D; Ralph J; Hammel KE Environ Microbiol; 2011 Apr; 13(4):1091-100. PubMed ID: 21261800 [TBL] [Abstract][Full Text] [Related]
14. Demethoxylation of [O14CH3]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta. Niemenmaa O; Uusi-Rauva A; Hatakka A Biodegradation; 2008 Jul; 19(4):555-65. PubMed ID: 17973193 [TBL] [Abstract][Full Text] [Related]
15. Comparing lignocellulose physiochemistry after decomposition by brown rot fungi with distinct evolutionary origins. Kaffenberger JT; Schilling JS Environ Microbiol; 2015 Dec; 17(12):4885-97. PubMed ID: 25181619 [TBL] [Abstract][Full Text] [Related]
16. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes. Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806 [TBL] [Abstract][Full Text] [Related]
17. Coupling Secretomics with Enzyme Activities To Compare the Temporal Processes of Wood Metabolism among White and Brown Rot Fungi. Presley GN; Panisko E; Purvine SO; Schilling JS Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29884760 [TBL] [Abstract][Full Text] [Related]
18. A genomics-informed study of oxalate and cellulase regulation by brown rot wood-degrading fungi. Presley GN; Zhang J; Schilling JS Fungal Genet Biol; 2018 Mar; 112():64-70. PubMed ID: 27543342 [TBL] [Abstract][Full Text] [Related]
19. Carbon-thirteen cross-polarization magic angle spinning nuclear magnetic resonance and Fourier transform infrared studies of thermally modified wood exposed to brown and soft rot fungi. Sivonen H; Nuopponen M; Maunu SL; Sundholm F; Vuorinen T Appl Spectrosc; 2003 Mar; 57(3):266-73. PubMed ID: 14658617 [TBL] [Abstract][Full Text] [Related]
20. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. Arantes V; Milagres AM; Filley TR; Goodell B J Ind Microbiol Biotechnol; 2011 Apr; 38(4):541-55. PubMed ID: 20711629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]