These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22609773)

  • 1. Effects of randomizing phase on the discrimination between amplitude-modulated and quasi-frequency-modulated tones.
    Tabuchi H; Borucki E; Berg BG
    Hear Res; 2012 Aug; 290(1-2):72-82. PubMed ID: 22609773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolating spectral cues in amplitude and quasi-frequency modulation discrimination by reducing stimulus duration.
    Borucki E; Berg BG
    Hear Res; 2017 May; 348():129-133. PubMed ID: 28284735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcomponent cues in binaural unmasking.
    Culling JF
    J Acoust Soc Am; 2011 Jun; 129(6):3846-55. PubMed ID: 21682408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of temporal fine structure information for the low pitch of high-frequency complex tones.
    Santurette S; Dau T
    J Acoust Soc Am; 2011 Jan; 129(1):282-92. PubMed ID: 21303009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of excitation-pattern, temporal-fine-structure, and envelope cues in the discrimination of complex tones.
    Jackson HM; Moore BC
    J Acoust Soc Am; 2014 Mar; 135(3):1356-70. PubMed ID: 24606274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behaviors of cubic distortion product otoacoustic emissions evoked by amplitude modulated tones.
    Bian L; Chen S
    J Acoust Soc Am; 2011 Feb; 129(2):828-39. PubMed ID: 21361441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How specific is the learning in an auditory frequency discrimination task?
    Zaltz Y; Ari-Even Roth D; Kishon-Rabin L
    J Basic Clin Physiol Pharmacol; 2011 Sep; 22(3):69-73. PubMed ID: 22865365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A decision weight analysis of transition bandwidths.
    Berg BG
    J Acoust Soc Am; 2013 Mar; 133(3):1214-7. PubMed ID: 23463992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating the transition bandwidth between two auditory processes: evidence for broadband auditory filters.
    Berg BG
    J Acoust Soc Am; 2007 Jun; 121(6):3639-45. PubMed ID: 17552715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can listeners hear who is singing? What is the pitch bandwidth of singer discrimination in untrained listeners?
    Erickson ML
    J Voice; 2012 May; 26(3):322-9. PubMed ID: 21889302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of temporal asymmetry on amplitude modulation detection using pure-tone carriers (L).
    Shen Y; Lentz JJ
    J Acoust Soc Am; 2011 Nov; 130(5):2635-8. PubMed ID: 22087889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perceived continuity and pitch shifts for complex tones with unresolved harmonics.
    Plack CJ; Watkinson RK
    J Acoust Soc Am; 2010 Oct; 128(4):1922-9. PubMed ID: 20968364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency modulated quadratic and cubic distortion product otoacoustic emissions in humans.
    Drexl M; Gürkov R; Krause E
    Hear Res; 2012 May; 287(1-2):91-101. PubMed ID: 22465462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination bandwidths for amplitude modulated and quasi-frequency modulated tones with spectral cues degraded by a roving-level.
    Berg BG; Zhu J; Tan AY; Borucki EM
    J Acoust Soc Am; 2018 Jun; 143(6):3639. PubMed ID: 29960508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of age and hearing loss on interaural phase difference discrimination.
    King A; Hopkins K; Plack CJ
    J Acoust Soc Am; 2014 Jan; 135(1):342-51. PubMed ID: 24437774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of envelope shape on interaural envelope delay sensitivity in acoustic and electric hearing.
    Laback B; Zimmermann I; Majdak P; Baumgartner WD; Pok SM
    J Acoust Soc Am; 2011 Sep; 130(3):1515-29. PubMed ID: 21895091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency modulation detection: effects of age, psychophysical method, and modulation waveform.
    He NJ; Mills JH; Dubno JR
    J Acoust Soc Am; 2007 Jul; 122(1):467-77. PubMed ID: 17614504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying the detection of frequency modulation.
    Ernst SM; Moore BC
    J Acoust Soc Am; 2010 Dec; 128(6):3642-8. PubMed ID: 21218896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplitude modulation reduces loudness adaptation to high-frequency tones.
    Wynne DP; George SE; Zeng FG
    J Acoust Soc Am; 2015 Jul; 138(1):279-83. PubMed ID: 26233027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation detection for amplitude-modulated bone-conducted sounds with sinusoidal carriers in the high- and ultrasonic-frequency range.
    Hotehama T; Nakagawa S
    J Acoust Soc Am; 2010 Nov; 128(5):3011-8. PubMed ID: 21110596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.