These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 22609860)

  • 1. Modeling the kinetics of microbial degradation of deicing chemicals in porous media under flow conditions.
    Wehrer M; Jaesche P; Totsche KU
    Environ Pollut; 2012 Sep; 168():96-106. PubMed ID: 22609860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport and anaerobic biodegradation of propylene glycol in gravel-rich soil materials.
    Jaesche P; Totsche KU; Kögel-Knabner I
    J Contam Hydrol; 2006 May; 85(3-4):271-86. PubMed ID: 16563561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertical and horizontal distributions of microbial abundances and enzymatic activities in propylene-glycol-affected soils.
    Biró B; Toscano G; Horváth N; Matics H; Domonkos M; Scotti R; Rao MA; Wejden B; French HK
    Environ Sci Pollut Res Int; 2014; 21(15):9095-108. PubMed ID: 24627198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraints of propylene glycol degradation at low temperatures and saturated flow conditions.
    Lissner H; Wehrer M; Reinicke M; Horváth N; Totsche KU
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):3158-74. PubMed ID: 25239107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural and enhanced biodegradation of propylene glycol in airport soil.
    Toscano G; Colarieti ML; Anton A; Greco G; Biró B
    Environ Sci Pollut Res Int; 2014; 21(15):9028-35. PubMed ID: 23828729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic biodegradation of propylene glycol by soil bacteria.
    Toscano G; Cavalca L; Letizia Colarieti M; Scelza R; Scotti R; Rao MA; Andreoni V; Ciccazzo S; Greco G
    Biodegradation; 2013 Sep; 24(5):603-13. PubMed ID: 23187798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of fenamiphos in soils collected from different geographical regions: the influence of soil properties and climatic conditions.
    Cáceres T; Megharaj M; Naidu R
    J Environ Sci Health B; 2008 May; 43(4):314-22. PubMed ID: 18437619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a biodegradation model for the prediction of metabolites in soil.
    Dimitrov S; Nedelcheva D; Dimitrova N; Mekenyan O
    Sci Total Environ; 2010 Aug; 408(18):3811-6. PubMed ID: 20199798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monod kinetics rather than a first-order degradation model explains atrazine fate in soil mini-columns: implications for pesticide fate modelling.
    Cheyns K; Mertens J; Diels J; Smolders E; Springael D
    Environ Pollut; 2010 May; 158(5):1405-11. PubMed ID: 20116148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements and modeling of pesticide persistence in soil at the catchment scale.
    Ghafoor A; Jarvis NJ; Thierfelder T; Stenström J
    Sci Total Environ; 2011 Apr; 409(10):1900-8. PubMed ID: 21353292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of system complexity on bacterial transport in saturated porous media.
    Jordan FL; Sandrin SK; Frye RJ; Brusseau ML; Maier RM
    J Contam Hydrol; 2004 Oct; 74(1-4):19-38. PubMed ID: 15358485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Illuminating reactive microbial transport in saturated porous media: demonstration of a visualization method and conceptual transport model.
    Oates PM; Castenson C; Harvey CF; Polz M; Culligan P
    J Contam Hydrol; 2005 May; 77(4):233-45. PubMed ID: 15854718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils.
    Xu J; Wu L; Chang AC
    Chemosphere; 2009 Nov; 77(10):1299-305. PubMed ID: 19853275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does microbial centimeter-scale heterogeneity impact MCPA degradation in and leaching from a loamy agricultural soil?
    Rosenbom AE; Binning PJ; Aamand J; Dechesne A; Smets BF; Johnsen AR
    Sci Total Environ; 2014 Feb; 472():90-8. PubMed ID: 24291558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of System Dynamics technique to simulate the fate of persistent organic pollutants in soils.
    Chaves R; López D; Macías F; Casares J; Monterroso C
    Chemosphere; 2013 Mar; 90(9):2428-34. PubMed ID: 23177003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems.
    Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atrazine leaching through surface and subsurface of a tropical Oxisol.
    Langenbach T; Correia FV; Macrae A; Vargas EA; Campos TM
    J Environ Sci Health B; 2008; 43(3):214-8. PubMed ID: 18368540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling spatial variation in microbial degradation of pesticides in soil.
    Ghafoor A; Moeys J; Stenström J; Tranter G; Jarvis NJ
    Environ Sci Technol; 2011 Aug; 45(15):6411-9. PubMed ID: 21682283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous time random walk in homogeneous porous media.
    Jiang J; Wu J
    J Contam Hydrol; 2013 Dec; 155():82-6. PubMed ID: 24212049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second-order modeling of arsenite transport in soils.
    Zhang H; Magdi Selim H
    J Contam Hydrol; 2011 Nov; 126(3-4):121-9. PubMed ID: 22115079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.