BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 22609866)

  • 1. Surface-structure-regulated penetration of nanoparticles across a cell membrane.
    Li Y; Li X; Li Z; Gao H
    Nanoscale; 2012 Jun; 4(12):3768-75. PubMed ID: 22609866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing nanoparticle translocation through cell membranes by varying amphiphilic polymer coatings.
    Zhang L; Becton M; Wang X
    J Phys Chem B; 2015 Mar; 119(9):3786-94. PubMed ID: 25675048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penetration of nanoparticles across a lipid bilayer: effects of particle stiffness and surface hydrophobicity.
    Wang S; Guo H; Li Y; Li X
    Nanoscale; 2019 Mar; 11(9):4025-4034. PubMed ID: 30768108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.
    Gkeka P; Angelikopoulos P; Sarkisov L; Cournia Z
    PLoS Comput Biol; 2014 Dec; 10(12):e1003917. PubMed ID: 25474252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative transmembrane penetration of nanoparticles.
    Zhang H; Ji Q; Huang C; Zhang S; Yuan B; Yang K; Ma YQ
    Sci Rep; 2015 May; 5():10525. PubMed ID: 26013284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations.
    Van Lehn RC; Alexander-Katz A
    Soft Matter; 2015 Apr; 11(16):3165-75. PubMed ID: 25757187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect.
    Li Y; Chen X; Gu N
    J Phys Chem B; 2008 Dec; 112(51):16647-53. PubMed ID: 19032046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spontaneous penetration mechanism of patterned nanoparticles across a biomembrane.
    Li Y; Zhang X; Cao D
    Soft Matter; 2014 Sep; 10(35):6844-56. PubMed ID: 25082334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing nanoparticle translocation through membranes by computer simulations.
    Ding HM; Tian WD; Ma YQ
    ACS Nano; 2012 Feb; 6(2):1230-8. PubMed ID: 22208867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of supported lipid bilayers by semihydrophobic nanoparticles.
    Jing B; Zhu Y
    J Am Chem Soc; 2011 Jul; 133(28):10983-9. PubMed ID: 21631111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adhesion, intake, and release of nanoparticles by lipid bilayers.
    Burgess S; Wang Z; Vishnyakov A; Neimark AV
    J Colloid Interface Sci; 2020 Mar; 561():58-70. PubMed ID: 31812867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of gold nanoparticles into bilayer structures via adaptive surface chemistry.
    Lee HY; Shin SH; Abezgauz LL; Lewis SA; Chirsan AM; Danino DD; Bishop KJ
    J Am Chem Soc; 2013 Apr; 135(16):5950-3. PubMed ID: 23565704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating interactions between ligand-coated nanoparticles and phase-separated lipid bilayers by varying the ligand density and the surface charge.
    Chen X; Tieleman DP; Liang Q
    Nanoscale; 2018 Feb; 10(5):2481-2491. PubMed ID: 29340405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
    da Rocha EL; Caramori GF; Rambo CR
    Phys Chem Chem Phys; 2013 Feb; 15(7):2282-90. PubMed ID: 23223270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand Lipophilicity Determines Molecular Mechanisms of Nanoparticle Adsorption to Lipid Bilayers.
    Huang-Zhu CA; Sheavly JK; Chew AK; Patel SJ; Van Lehn RC
    ACS Nano; 2024 Feb; 18(8):6424-6437. PubMed ID: 38354368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular-Level "Observations" of the Behavior of Gold Nanoparticles in Aqueous Solution and Interacting with a Lipid Bilayer Membrane.
    Oroskar PA; Jameson CJ; Murad S
    Methods Mol Biol; 2019; 2000():303-359. PubMed ID: 31148024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle-induced permeability of lipid membranes.
    Pogodin S; Werner M; Sommer JU; Baulin VA
    ACS Nano; 2012 Dec; 6(12):10555-61. PubMed ID: 23128273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained modeling of vesicle responses to active rotational nanoparticles.
    Zhang L; Wang X
    Nanoscale; 2015 Aug; 7(32):13458-67. PubMed ID: 26140682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Small Nanoparticles Decorated with Amphiphilic Ligands: Self-Preservation Effect and Translocation into a Plasma Membrane.
    Liu Y; Li S; Liu X; Sun H; Yue T; Zhang X; Yan B; Cao D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):23822-23831. PubMed ID: 31250627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.