BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 22609866)

  • 21. Dynamic cellular uptake of mixed-monolayer protected nanoparticles.
    Carney RP; Carney TM; Mueller M; Stellacci F
    Biointerphases; 2012 Dec; 7(1-4):17. PubMed ID: 22589060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations.
    Prates Ramalho JP; Gkeka P; Sarkisov L
    Langmuir; 2011 Apr; 27(7):3723-30. PubMed ID: 21391652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles.
    Ding HM; Ma YQ
    Biomaterials; 2012 Aug; 33(23):5798-802. PubMed ID: 22607914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ligand-Dependent Nanoparticle Clustering within Lipid Membranes Induced by Surrounding Medium.
    Šegota S; Vojta D; Kendziora D; Ahmed I; Fruk L; Baranović G
    J Phys Chem B; 2015 Apr; 119(16):5208-19. PubMed ID: 25831116
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of surface tension at liquid-liquid interfaces using nanoparticles and nanoparticle-protein complexes.
    Rana S; Yu X; Patra D; Moyano DF; Miranda OR; Hussain I; Rotello VM
    Langmuir; 2012 Jan; 28(4):2023-7. PubMed ID: 22166076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship.
    Lin J; Zhang H; Chen Z; Zheng Y
    ACS Nano; 2010 Sep; 4(9):5421-9. PubMed ID: 20799717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling nanoparticle wrapping or translocation in bilayer membranes.
    Curtis EM; Bahrami AH; Weikl TR; Hall CK
    Nanoscale; 2015 Sep; 7(34):14505-14. PubMed ID: 26260123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.
    Bailey CM; Kamaloo E; Waterman KL; Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015; 203-204():51-61. PubMed ID: 26042544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Homogeneous Hydrophobic-Hydrophilic Surface Patterns Enhance Permeation of Nanoparticles through Lipid Membranes.
    Gkeka P; Sarkisov L; Angelikopoulos P
    J Phys Chem Lett; 2013 Jun; 4(11):1907-12. PubMed ID: 26283128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular Modeling of the Fluorination Effect on the Penetration of Nanoparticles across Lipid Bilayers.
    Wang M; Ni SD; Yin YW; Ma YQ; Ding HM
    Langmuir; 2024 Jan; 40(2):1295-1304. PubMed ID: 38173387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes.
    Hou WC; Moghadam BY; Corredor C; Westerhoff P; Posner JD
    Environ Sci Technol; 2012 Feb; 46(3):1869-76. PubMed ID: 22242832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles.
    Yue T; Zhang X
    ACS Nano; 2012 Apr; 6(4):3196-205. PubMed ID: 22429100
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and thermal analysis of lipid vesicles encapsulating hydrophobic gold nanoparticles.
    Von White G; Chen Y; Roder-Hanna J; Bothun GD; Kitchens CL
    ACS Nano; 2012 Jun; 6(6):4678-85. PubMed ID: 22632177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of lipid coating on the interaction between silica nanoparticles and membranes.
    Tada DB; Suraniti E; Rossi LM; Leite CA; Oliveira CS; Tumolo TC; Calemczuk R; Livache T; Baptista MS
    J Biomed Nanotechnol; 2014 Mar; 10(3):519-28. PubMed ID: 24730247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane-embedded nanoparticles induce lipid rearrangements similar to those exhibited by biological membrane proteins.
    Van Lehn RC; Alexander-Katz A
    J Phys Chem B; 2014 Nov; 118(44):12586-98. PubMed ID: 25347475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ligand-decoration determines the translational and rotational dynamics of nanoparticles on a lipid bilayer membrane.
    Zhang Z; Ma W; He K; Yuan B; Yang K
    Phys Chem Chem Phys; 2021 Apr; 23(15):9158-9165. PubMed ID: 33885120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fusion of ligand-coated nanoparticles with lipid bilayers: effect of ligand flexibility.
    Van Lehn RC; Alexander-Katz A
    J Phys Chem A; 2014 Aug; 118(31):5848-56. PubMed ID: 24779418
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes.
    Angelikopoulos P; Sarkisov L; Cournia Z; Gkeka P
    Nanoscale; 2017 Jan; 9(3):1040-1048. PubMed ID: 27740657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct proof of spontaneous translocation of lipid-covered hydrophobic nanoparticles through a phospholipid bilayer.
    Guo Y; Terazzi E; Seemann R; Fleury JB; Baulin VA
    Sci Adv; 2016 Nov; 2(11):e1600261. PubMed ID: 27847863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.