These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22610633)

  • 1. Plant tissue culture of fast-growing trees for phytoremediation research.
    Couselo JL; Corredoira E; Vieitez AM; Ballester A
    Methods Mol Biol; 2012; 877():247-63. PubMed ID: 22610633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removing heavy metals by in vitro cultures.
    Santos-Díaz Mdel S; Barrón-Cruz Mdel C
    Methods Mol Biol; 2012; 877():265-70. PubMed ID: 22610634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of plant tissue cultures in phytoremediation research: incentives and limitations.
    Doran PM
    Biotechnol Bioeng; 2009 May; 103(1):60-76. PubMed ID: 19309741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes.
    Danh LT; Truong P; Mammucari R; Tran T; Foster N
    Int J Phytoremediation; 2009; 11(8):664-91. PubMed ID: 19810597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics.
    Abhilash PC; Jamil S; Singh N
    Biotechnol Adv; 2009; 27(4):474-88. PubMed ID: 19371778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaches for enhanced phytoextraction of heavy metals.
    Bhargava A; Carmona FF; Bhargava M; Srivastava S
    J Environ Manage; 2012 Aug; 105():103-20. PubMed ID: 22542973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of hairy roots for phytoremediation: what makes them an interesting tool for this purpose?
    Agostini E; Talano MA; González PS; Oller AL; Medina MI
    Appl Microbiol Biotechnol; 2013 Feb; 97(3):1017-30. PubMed ID: 23287856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics.
    Marmiroli M; Pietrini F; Maestri E; Zacchini M; Marmiroli N; Massacci A
    Tree Physiol; 2011 Dec; 31(12):1319-34. PubMed ID: 22052656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspectives of plant-associated microbes in heavy metal phytoremediation.
    Rajkumar M; Sandhya S; Prasad MN; Freitas H
    Biotechnol Adv; 2012; 30(6):1562-74. PubMed ID: 22580219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Cartagena-La Unión mining district (SE Spain): a review of environmental problems and emerging phytoremediation solutions after fifteen years research.
    Conesa HM; Schulin R
    J Environ Monit; 2010 Jun; 12(6):1225-33. PubMed ID: 20390210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allocation plasticity and plant-metal partitioning: meta-analytical perspectives in phytoremediation.
    Audet P; Charest C
    Environ Pollut; 2008 Nov; 156(2):290-6. PubMed ID: 18362044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.
    Ma Y; Prasad MN; Rajkumar M; Freitas H
    Biotechnol Adv; 2011; 29(2):248-58. PubMed ID: 21147211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Advances in the research of genetic engineering of heavy metal resistance and accumulation in plants].
    Lang ML; Zhang YX; Chai TY
    Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):157-64. PubMed ID: 15969101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detoxification of cyanide by woody plants.
    Yu X; Zhou P; Liu Y; Hu H
    Arch Environ Contam Toxicol; 2005 Aug; 49(2):150-4. PubMed ID: 15981035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives.
    Audet P; Charest C
    Environ Pollut; 2007 Jun; 147(3):609-14. PubMed ID: 17118259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation: an overview of metallic ion decontamination from soil.
    Singh OV; Labana S; Pandey G; Budhiraja R; Jain RK
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):405-12. PubMed ID: 12764555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review with recent advancements on bioremediation-based abolition of heavy metals.
    Gaur N; Flora G; Yadav M; Tiwari A
    Environ Sci Process Impacts; 2014 Feb; 16(2):180-93. PubMed ID: 24362580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils.
    Hong-Bo S; Li-Ye C; Cheng-Jiang R; Hua L; Dong-Gang G; Wei-Xiang L
    Crit Rev Biotechnol; 2010 Mar; 30(1):23-30. PubMed ID: 19821782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Populus and Salix continuously irrigated with landfill leachate I. Genotype-specific elemental phytoremediation.
    Zalesny RS; Bauer EO
    Int J Phytoremediation; 2007; 9(4):281-306. PubMed ID: 18246707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.